

Jupyter Enterprise Gateway

Jupyter Enterprise Gateway is a web server (built directly on Jupyter Kernel Gateway [http://jupyter-kernel-gateway.readthedocs.io/en/latest/]) that enables the ability to launch kernels on behalf of
remote notebooks throughout your enterprise compute cluster. This enables better resource management since the web
server is no longer the single location for kernel activity which, in Big Data environments, can result in large
processes that together deplete your single node of its resources.

[image: images/Scalability-before-JEG.gif]
By default, Jupyter runs kernels locally - potentially exhausting the server of resources

By leveraging the functionality of the
underlying resource management applications like Hadoop YARN, Kubernetes, etc., Jupyter Enterprise Gateway
distributes kernels across the compute cluster, increasing the number of simultaneously active kernels dramatically.

[image: images/Scalability-after-JEG.gif]
Jupyter Enterprise Gateway leverages local resource managers to distribute kernels

User Documentation

	Getting started
	Enterprise Gateway Features

	Installing Enterprise Gateway

	Installing Kernels

	Configuring Spark Resource Managers

	Starting Enterprise Gateway

	Connecting a Notebook to Enterprise Gateway

	Enabling Cluster Mode Support

	Enabling Client Mode/Standalone Support

	Advanced Features
	Culling idle kernels

	Installing Python modules from within notebook cell

	Supported Kernels
	Scala kernel (Apache Toree kernel)

	Installing support for Python (IPython kernel)

	Installing support for R (IRkernel)

	Security Features
	Authorization

	User Impersonation

	SSH Tunneling

	Securing Enterprise Gateway Server

Architecture and Design

	Use Cases

	System Architecture
	Enterprise Gateway Process Proxy Extensions

	Remote Mapping Kernel Manager

	Remote Kernel Manager

	Process Proxy

	Launchers

	Extending Enterprise Gateway

Configuration

	Configuration options
	Addtional supported environment variables

	Per-kernel Configuration Overrides

	Troubleshooting

	Debugging Jupyter Enterprise Gateway
	Configuring your IDE for debugging Jupyter Enterprise Gateway

Contributor Documentation

	Contributing to Jupyter Enterprise Gateway

	Development Workflow
	Prerequisites

	Clone the repo

	Make

	Build a conda environment

	Build the wheel file

	Build the kernelspec tar file

	Run the Enterprise Gateway server

	Build the docs

	Run the unit tests

	Run the integration tests

	Build the docker images

	Docker Images
	elyra/yarn-spark

	elyra/enterprise-gateway

	elyra/nb2kg

	Project Roadmap

Community Documentation

	Jupyter mailing list [https://groups.google.com/forum/#!forum/jupyter]

	Jupyter website [https://jupyter.org]

	Stack Overflow - Jupyter [https://stackoverflow.com/questions/tagged/jupyter]

	Stack Overflow - Jupyter-notebook [https://stackoverflow.com/questions/tagged/jupyter-notebook]

Getting started

Jupyter Enterprise Gateway requires Python (Python 3.3 or greater, or Python 2.7) and is intended
to be installed on a Apache Spark 2.x [http://spark.apache.org/docs/latest/index.html] cluster.

The following Resource Managers are supported with the Jupyter Enterprise Gateway:

	Spark Standalone

	YARN Resource Manager - Client Mode

	YARN Resource Manager - Cluster Mode

The following kernels have been tested with the Jupyter Enterprise Gateway:

	Python/Apache Spark 2.x with IPython kernel

	Scala 2.11/Apache Spark 2.x with Apache Toree kernel

	R/Apache Spark 2.x with IRkernel

To support Scala kernels, Apache Toree [https://toree.apache.org/] must be installed. To support
IPython kernels and R kernels to run in YARN containers, various packages have to be installed
on each of the YARN data nodes. The simplest way to enable all the data nodes with required
dependencies is to install Anaconda [https://anaconda.com/] on all cluster nodes.

To take full advantage of security and user impersonation capabilities, a Kerberized cluster
is recommended.

Enterprise Gateway Features

Jupyter Enterprise Gateway exposes the following features and functionality:

	Enables the ability to launch kernels on different servers thereby distributing resource utilization
across the enterprise

	Pluggable framework allows for support of additional resource managers

	Secure communication from client to kernel

	Persistent kernel sessions (see Roadmap)

	Configuration profiles (see Roadmap)

	Feature parity with Jupyter Kernel Gateway [http://jupyter-kernel-gateway.readthedocs.io/en/latest/]

	A CLI for launching the enterprise gateway server: jupyter enterprisegateway OPTIONS

	A Python 2.7 and 3.3+ compatible implementation

Installing Enterprise Gateway

For new users, we highly recommend installing Anaconda [http://www.anaconda.com/download].
Anaconda conveniently installs Python, the Jupyter Notebook [http://jupyter.readthedocs.io/en/latest/install.html], the IPython kernel [http://ipython.readthedocs.io/en/stable/install/kernel_install.html] and other commonly used
packages for scientific computing and data science.

Use the following installation steps:

	Download Anaconda [http://www.anaconda.com/download]. We recommend downloading Anaconda’s
latest Python version (currently Python 2.7 and Python 3.6).

	Install the version of Anaconda which you downloaded, following the instructions on the download
page.

	Install the latest version of Jupyter Enterprise Gateway from PyPI [https://pypi.python.org/pypi/jupyter_enterprise_gateway/1.1.0]
using pip(part of Anaconda) along with its dependencies.

install using pip from pypi
pip install --upgrade jupyter_enterprise_gateway

install using conda from conda forge
conda install -c conda-forge jupyter_enterprise_gateway

At this point, the Jupyter Enterprise Gateway deployment provides local kernel support which is
fully compatible with Jupyter Kernel Gateway.

To uninstall Jupyter Enterprise Gateway…

#uninstall using pip
pip uninstall jupyter_enterprise_gateway

#uninstall using conda
conda uninstall jupyter_enterprise_gateway

Installing Kernels

Please follow the link below to learn more specific details about how to install/configure specific
kernels with Jupyter Enterprise Gateway:

	Installing and Configuring kernels

Configuring Spark Resource Managers

To leverage the full distributed capabilities of Spark, Jupyter Enterprise Gateway has provided
deep integrarion with YARN resource manager. Having said that, EG also supports running in
pseudo-distributed utilizing both YARN client or Spark Standalone modes.

Please follow the links below to learn more specific details about how to enable/configure
the different modes:

	Enabling Cluster Mode support

	Enabling Client Mode/Standalone support

Starting Enterprise Gateway

Very few arguments are necessary to minimally start Enterprise Gateway. The following command
could be considered a minimal command:

jupyter enterprisegateway --ip=0.0.0.0 --port_retries=0

where --ip=0.0.0.0 exposes Enterprise Gateway on the public network and --port_retries=0 ensures
that a single instance will be started.

We recommend starting Enterprise Gateway as a background task. As a result, you might find it best
to create a start script to maintain options, file redirection, etc.

The following script starts Enterprise Gateway with DEBUG tracing enabled (default is INFO) and idle
kernel culling for any kernels idle for 12 hours where idle check intervals occur every minute. The Enterprise Gateway log can then be monitored via tail -F enterprise_gateway.log and it can be
stopped via kill $(cat enterprise_gateway.pid)

#!/bin/bash

LOG=/var/log/enterprise_gateway.log
PIDFILE=/var/run/enterprise_gateway.pid

jupyter enterprisegateway --ip=0.0.0.0 --port_retries=0 --log-level=DEBUG > $LOG 2>&1 &
if ["$?" -eq 0]; then
 echo $! > $PIDFILE
else
 exit 1
fi

Connecting a Notebook to Enterprise Gateway

NB2KG [https://github.com/jupyter-incubator/nb2kg] is used to connect a Notebook from a
local desktop or laptop to the Enterprise Gateway instance on the Spark/YARN cluster. We strongly recommend
that NB2KG v0.1.0 [https://github.com/jupyter-incubator/nb2kg/releases/tag/v0.1.0] be used as our team has
provided some security enhancements to enable for conveying the notebook user (for configurations when
Enterprise Gateway is running behind a secured gateway) and allowing for increased request timeouts (due
to the longer kernel startup times when interacting with the resource manager or distribution operations).

Extending the notebook launch command listed on the NB2KG repo [https://github.com/jupyter-incubator/nb2kg#run-notebook-server],
one might use the following…

export KG_URL=http://<ENTERPRISE_GATEWAY_HOST_IP>:8888
export KG_HTTP_USER=guest
export KG_HTTP_PASS=guest-password
export KG_REQUEST_TIMEOUT=30
export KERNEL_USERNAME=${KG_HTTP_USER}
jupyter notebook \
 --NotebookApp.session_manager_class=nb2kg.managers.SessionManager \
 --NotebookApp.kernel_manager_class=nb2kg.managers.RemoteKernelManager \
 --NotebookApp.kernel_spec_manager_class=nb2kg.managers.RemoteKernelSpecManager

For your convenience, we have also built a docker image (elyra/nb2kg) with
Jupyter Notebook, Jupyter Lab and NB2KG which can be launched by the command below:

docker run -t --rm \
 -e KG_URL='http://<master ip>:8888' \
 -e KG_HTTP_USER=guest \
 -e KG_HTTP_PASS=guest-password \
 -p 8888:8888 \
 -e VALIDATE_KG_CERT='no' \
 -e LOG_LEVEL=DEBUG \
 -e KG_REQUEST_TIMEOUT=40 \
 -e KG_CONNECT_TIMEOUT=40 \
 -v ${HOME}/notebooks/:/tmp/notebooks \
 -w /tmp/notebooks \
 elyra/nb2kg

To invoke Jupyter Lab, simply add lab as the last option following the image name (e.g., elyra/nb2kg lab).

Enabling Cluster Mode Support

To leverage the full distributed capabilities of Jupyter Enterprise Gateway, there is a need to
provide additional configuration options in a cluster deployment.

The distributed capabilities are currently based on an Apache Spark cluster utilizing YARN as the
Resource Manager and thus require the following environment variables to be set to facilitate the
integration between Apache Spark and YARN components:

	SPARK_HOME: Must point to the Apache Spark installation path

SPARK_HOME:/usr/hdp/current/spark2-client #For HDP distribution

	EG_YARN_ENDPOINT: Must point to the YARN Resource Manager endpoint

EG_YARN_ENDPOINT=http://${YARN_RESOURCE_MANAGER_FQDN}:8088/ws/v1/cluster #Common to YARN deployment

Configuring Kernels for YARN Cluster mode

For each supported Jupyter Kernel, we have provided sample kernel configurations and launchers as part of the release
e.g. jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz [https://github.com/jupyter-incubator/enterprise_gateway/releases/download/v1.1.0/jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz].

Considering we would like to enable the iPython Kernel that comes pre-installed with Anaconda to run on Yarn Cluster mode, we
would have to copy the sample configuration folder spark_python_yarn_cluster to where the Jupyter kernels are installed
(e.g. jupyter kernelspec list)

wget https://github.com/jupyter-incubator/enterprise_gateway/releases/download/v1.1.0/enterprise_gateway_kernelspecs.tar.gz

SCALA_KERNEL_DIR="$(jupyter kernelspec list | grep -w "python3" | awk '{print $2}')"

KERNELS_FOLDER="$(dirname "${SCALA_KERNEL_DIR}")"

tar -zxvf enterprise_gateway_kernelspecs.tar.gz --strip 1 --directory $KERNELS_FOLDER/spark_python_yarn_cluster/ spark_python_yarn_cluster/

After that, you should have a kernel.json that looks similar to the one below:

{
 "language": "python",
 "display_name": "Spark - Python (YARN Cluster Mode)",
 "process_proxy": {
 "class_name": "enterprise_gateway.services.processproxies.yarn.YarnClusterProcessProxy"
 },
 "env": {
 "SPARK_HOME": "/usr/hdp/current/spark2-client",
 "PYSPARK_PYTHON": "/opt/anaconda3/bin/python",
 "PYTHONPATH": "${HOME}/.local/lib/python3.6/site-packages:/usr/hdp/current/spark2-client/python:/usr/hdp/current/spark2-client/python/lib/py4j-0.10.4-src.zip",
 "SPARK_YARN_USER_ENV": "PYTHONUSERBASE=/home/yarn/.local,PYTHONPATH=${HOME}/.local/lib/python3.6/site-packages:/usr/hdp/current/spark2-client/python:/usr/hdp/current/spark2-client/python/lib/py4j-0.10.4-src.zip,PATH=/opt/anaconda2/bin:$PATH",
 "SPARK_OPTS": "--master yarn --deploy-mode cluster --name ${KERNEL_ID:-ERROR__NO__KERNEL_ID} --conf spark.yarn.submit.waitAppCompletion=false",
 "LAUNCH_OPTS": ""
 },
 "argv": [
 "/usr/local/share/jupyter/kernels/spark_python_yarn_cluster/bin/run.sh",
 "{connection_file}",
 "--RemoteProcessProxy.response-address",
 "{response_address}"
]
}

After making any necessary adjustments such as updating SPARK_HOME or other environment specific configuration, you now should have
a new Kernel available which will use Jupyter Enterprise Gateway to execute your notebook cell contents in distributed mode
on a Spark/Yarn Cluster.

Enabling Client Mode/Standalone Support

Jupyter Enterprise Gateway extends Jupyter Kernel Gateway and is 100% compatible with JKG, which means that by
installing kernels in Enterprise Gateway and using the vanila kernelspecs created during installation you will
have your kernels running in client mode with drivers running on the same host as Enterprise Gateway.

Having said that, even if you are not leveraging the full distributed capabilities of Jupyter Enterprise Gateway,
client mode can still help mitigate resource starvation by enabling a pseudo-distributed mode,
where kernels are started in different nodes of the cluster utilizing a round-robin algorithm.
In this case, you can still experience bottlenecks on a given node that receives requests to start
“large” kernels, but otherwise, you will be better off compared to when all kernels are started
on a single node or as local processes, which is the default for vanilla Jupyter Notebook.

The pseudo-distributed capabilities are currently supported in YARN Client mode or using vanilla Spark Standalone and
require the following environment variables to be set:

	SPARK_HOME: Must point to the Apache Spark installation path

SPARK_HOME:/usr/hdp/current/spark2-client #For HDP distribution

	EG_REMOTE_HOSTS must be set to a comma-separated set of FQDN hosts indicating the hosts available for running kernels.
(This can be specified via the command line as well: –EnterpriseGatewayApp.remote_hosts)

EG_REMOTE_HOSTS=elyra-node-1.fyre.ibm.com,elyra-node-2.fyre.ibm.com,elyra-node-3.fyre.ibm.com,elyra-node-4.fyre.ibm.com,elyra-node-5.fyre.ibm.com

Configuring Kernels for YARN Client mode

For each supported Jupyter Kernel, we have provided sample kernel configurations and launchers as part of the release
e.g. jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz [https://github.com/jupyter-incubator/enterprise_gateway/releases/download/v1.1.0/jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz].

Considering we would like to enable the iPython Kernel that comes pre-installed with Anaconda to run on
Yarn Client mode, we would have to copy the sample configuration folder spark_python_yarn_client
to where the Jupyter kernels are installed (e.g. jupyter kernelspec list)

wget https://github.com/jupyter-incubator/enterprise_gateway/releases/download/v1.1.0/enterprise_gateway_kernelspecs.tar.gz

SCALA_KERNEL_DIR="$(jupyter kernelspec list | grep -w "python3" | awk '{print $2}')"

KERNELS_FOLDER="$(dirname "${SCALA_KERNEL_DIR}")"

tar -zxvf enterprise_gateway_kernelspecs.tar.gz --strip 1 --directory $KERNELS_FOLDER/spark_python_yarn_client/ spark_python_yarn_client/

After that, you should have a kernel.json that looks similar to the one below:

{
 "language": "python",
 "display_name": "Spark - Python (YARN Client Mode)",
 "process_proxy": {
 "class_name": "enterprise_gateway.services.processproxies.distributed.DistributedProcessProxy"
 },
 "env": {
 "SPARK_HOME": "/usr/hdp/current/spark2-client",
 "PYSPARK_PYTHON": "/opt/anaconda3/bin/python",
 "PYTHONPATH": "${HOME}/.local/lib/python3.6/site-packages:/usr/hdp/current/spark2-client/python:/usr/hdp/current/spark2-client/python/lib/py4j-0.10.4-src.zip",
 "SPARK_YARN_USER_ENV": "PYTHONUSERBASE=/home/yarn/.local,PYTHONPATH=${HOME}/.local/lib/python3.6/site-packages:/usr/hdp/current/spark2-client/python:/usr/hdp/current/spark2-client/python/lib/py4j-0.10.4-src.zip,PATH=/opt/anaconda2/bin:$PATH",
 "SPARK_OPTS": "--master yarn --deploy-mode client --name ${KERNEL_ID:-ERROR__NO__KERNEL_ID} --conf spark.yarn.submit.waitAppCompletion=false",
 "LAUNCH_OPTS": ""
 },
 "argv": [
 "/usr/local/share/jupyter/kernels/spark_python_yarn_client/bin/run.sh",
 "{connection_file}",
 "--RemoteProcessProxy.response-address",
 "{response_address}"
]
}

After making any necessary adjustments such as updating SPARK_HOME or other environment specific configuration, you now should have
a new Kernel available which will use Jupyter Enterprise Gateway to execute your notebook cell contents.

Configuring Kernels for Spark Standalone mode

The main difference between YARN Client and Standalone is the values used in SPARK_OPTS for the --master parameter.

Please see below how a kernel.json would look like for integrating with Spark Standalone:

{
 "language": "python",
 "display_name": "Spark - Python (YARN Client Mode)",
 "process_proxy": {
 "class_name": "enterprise_gateway.services.processproxies.distributed.DistributedProcessProxy"
 },
 "env": {
 "SPARK_HOME": "/usr/hdp/current/spark2-client",
 "PYSPARK_PYTHON": "/opt/anaconda3/bin/python",
 "PYTHONPATH": "${HOME}/.local/lib/python3.6/site-packages:/usr/hdp/current/spark2-client/python:/usr/hdp/current/spark2-client/python/lib/py4j-0.10.4-src.zip",
 "SPARK_YARN_USER_ENV": "PYTHONUSERBASE=/home/yarn/.local,PYTHONPATH=${HOME}/.local/lib/python3.6/site-packages:/usr/hdp/current/spark2-client/python:/usr/hdp/current/spark2-client/python/lib/py4j-0.10.4-src.zip,PATH=/opt/anaconda2/bin:$PATH",
 "SPARK_OPTS": "--master spark://127.0.0.1:7077 --name ${KERNEL_ID:-ERROR__NO__KERNEL_ID} --conf spark.yarn.submit.waitAppCompletion=false",
 "LAUNCH_OPTS": ""
 },
 "argv": [
 "/usr/local/share/jupyter/kernels/spark_python_yarn_client/bin/run.sh",
 "{connection_file}",
 "--RemoteProcessProxy.response-address",
 "{response_address}"
]
}

Advanced Features

Culling idle kernels

With the adoption of notebooks and iteractive development for data science, a new “resource utilization” pattern has
arrised, where kernel resources are locked for a given notebook, but due to iteractive development process it might
be idle for a long period of time causing the cluster resources to starve and a way to workaround this problem is to
enable culling of idle kernels after a specific timeout period.

Idle kernel culling is set to “off” by default. It’s enabled by setting –MappingKernelManager.cull_idle_timeout to
a positive value representing the number of seconds a kernel must remain idle to be culled
(default: 0, recommended: 43200, 12 hours). Positive values less than 300 (5 minutes) will be adjusted to 300.

You can also configure the interval that the kernels are checked for their idle timeouts by adjusting the setting
–MappingKernelManager.cull_interval to a positive value. If the interval is not set or set to a non-positive value,
the system uses 300 seconds as the default value: (default: 300 seconds).

There are use-cases where we would like to enable only culling of idle kernels that have no connections (e.g. the notebook
browser was closed without stopping the kernel first), this can be configured by adjusting the setting
–MappingKernelManager.cull_connected (default: False).

Below, see an updated start script that provides some default configuration to enable culling of idle kernels:

#!/bin/bash

LOG=/var/log/enterprise_gateway.log
PIDFILE=/var/run/enterprise_gateway.pid

jupyter enterprisegateway --ip=0.0.0.0 --port_retries=0 --log-level=DEBUG \
 --MappingKernelManager.cull_idle_timeout=43200 --MappingKernelManager.cull_interval=60 > $LOG 2>&1 &

if ["$?" -eq 0]; then
 echo $! > $PIDFILE
else
 exit 1
fi

Installing Python modules from within notebook cell

To be able to honor user isolation in a multi-tenant world, installing Python modules using pip from
within a Notebook Cell should be done using the --user command-line option as shown below:

!pip install --user <module-name>

This results in the Python module to be installed in $USER/.local/lib/python<version>/site-packages
folder. PYTHONPATH environment variable defined in kernel.json must include
$USER/.local/lib/python<version>/site-packages folder so that the newly installed module can be
successfully imported in a subsequent Notebook Cell as shown below:

import <module-name>

Supported Kernels

The following kernels have been tested with the Jupyter Enterprise Gateway:

	Python/Apache Spark 2.x with IPython kernel

	Scala 2.11/Apache Spark 2.x with Apache Toree kernel

	R/Apache Spark 2.x with IRkernel

We provide sample kernel configuration and launcher tar files as part of each release [https://github.com/jupyter-incubator/enterprise_gateway/releases]
(e.g. jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz [https://github.com/jupyter-incubator/enterprise_gateway/releases/download/v1.1.0/jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz])
that can be extracted and modified to fit your configuration.

Please find below more details on specific kernels:

Scala kernel (Apache Toree kernel)

We have tested the latest version of Apache Toree [http://toree.apache.org/] with Scala 2.11 support.

Follow the steps below to install/configure the Toree kernel:

Install Apache Toree

pip-install the Apache Toree installer
pip install https://dist.apache.org/repos/dist/release/incubator/toree/0.2.0-incubating/toree-pip/toree-0.2.0.tar.gz

install a new Toree Scala kernel which will be updated with Enterprise Gateway's custom kernel scripts
jupyter toree install --spark_home="${SPARK_HOME}" --kernel_name="Spark 2.x" --interpreters="Scala"

Update the Apache Toree Kernelspecs

Considering we would like to enable the Scala Kernel to run on YARN Cluster and Client mode
we would have to copy the sample configuration folder spark_scala_yarn_client and
spark_scala_yarn_client to where the Jupyter kernels are installed
(e.g. jupyter kernelspec list)

wget https://github.com/jupyter-incubator/enterprise_gateway/releases/download/v1.1.0/jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz

SCALA_KERNEL_DIR="$(jupyter kernelspec list | grep -w "spark_scala" | awk '{print $2}')"

KERNELS_FOLDER="$(dirname "${SCALA_KERNEL_DIR}")"

tar -zxvf jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz --strip 1 --directory $KERNELS_FOLDER/spark_scala_yarn_cluster/ spark_scala_yarn_cluster/

tar -zxvf jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz --strip 1 --directory $KERNELS_FOLDER/spark_scala_yarn_client/ spark_scala_yarn_client/

cp $KERNELS_FOLDER/spark_scala/lib/*.jar $KERNELS_FOLDER/spark_scala_yarn_cluster/lib

For more information about the Scala kernel, please visit the Apache Toree [http://toree.apache.org/] page.

Installing support for Python (IPython kernel)

The IPython kernel comes pre-installed with Anaconda and we have tested with its default version of
iPython kernel [http://ipython.readthedocs.io/en/stable/].

Update the iPython Kernelspecs

Considering we would like to enable the iPython kernel to run on YARN Cluster and Client mode
we would have to copy the sample configuration folder spark_python_yarn_client and
spark_python_yarn_client to where the Jupyter kernels are installed
(e.g. jupyter kernelspec list)

wget https://github.com/jupyter-incubator/enterprise_gateway/releases/download/v1.1.0/jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz

SCALA_KERNEL_DIR="$(jupyter kernelspec list | grep -w "spark_scala" | awk '{print $2}')"

KERNELS_FOLDER="$(dirname "${SCALA_KERNEL_DIR}")"

tar -zxvf jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz --strip 1 --directory $KERNELS_FOLDER/spark_python_yarn_cluster/ spark_python_yarn_cluster/

tar -zxvf jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz --strip 1 --directory $KERNELS_FOLDER/spark_python_yarn_client/ spark_python_yarn_client/

For more information about the iPython kernel, please visit the iPython kernel [http://ipython.readthedocs.io/en/stable/] page.

Installing support for R (IRkernel)

Install iRKernel

Perform the following steps on Jupyter Enterprise Gateway hosting system as well as all YARN workers

conda install --yes --quiet -c r r-essentials r-irkernel
Rscript -e 'install.packages("argparser", repos="https://cran.rstudio.com")'

Create an R-script to run and install packages
cat <<'EOF' > install_packages.R
install.packages(c('repr', 'IRdisplay', 'evaluate', 'git2r', 'crayon', 'pbdZMQ',
 'devtools', 'uuid', 'digest', 'RCurl', 'curl', 'argparser'),
 repos='http://cran.rstudio.com/')
devtools::install_github('IRkernel/IRkernel')
IRkernel::installspec(user = FALSE)
EOF

run the package install script
$ANACONDA_HOME/bin/Rscript install_packages.R

OPTIONAL: check the installed R packages
ls $ANACONDA_HOME/lib/R/library

Update the iR Kernelspecs

Considering we would like to enable the iR kernel to run on YARN Cluster and Client mode
we would have to copy the sample configuration folder spark_R_yarn_client and
spark_R_yarn_client to where the Jupyter kernels are installed
(e.g. jupyter kernelspec list)

wget https://github.com/jupyter-incubator/enterprise_gateway/releases/download/v1.1.0/jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz

SCALA_KERNEL_DIR="$(jupyter kernelspec list | grep -w "spark_scala" | awk '{print $2}')"

KERNELS_FOLDER="$(dirname "${SCALA_KERNEL_DIR}")"

tar -zxvf jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz --strip 1 --directory $KERNELS_FOLDER/spark_R_yarn_cluster/ spark_R_yarn_cluster/

tar -zxvf jupyter_enterprise_gateway_kernelspecs-1.1.0.tar.gz --strip 1 --directory $KERNELS_FOLDER/spark_R_yarn_client/ spark_R_yarn_client/

For more information about the iR kernel, please visit the iR kernel [https://irkernel.github.io/] page.

Security Features

Jupyter Enterprise Gateway does not currently perform user authentication but, instead, assumes that all users
issuing requests have been previously authenticated. Recommended applications for this are
Apache Knox [https://knox.apache.org/] or perhaps even Jupyter Hub [https://jupyterhub.readthedocs.io/en/latest/]
(e.g., if nb2kg-enabled notebook servers were spawned targeting an Enterprise Gateway cluster).

This section introduces some of the security features inherent in Enterprise Gateway (with more to come).

KERNEL_USERNAME

In order to convey the name of the authenicated user, KERNEL_USERNAME should be sent in the kernel creation request
via the env: entry. This will occur automatically within NB2KG since it propagates all environment variables
prefixed with KERNEL_. If the request does not include a KERNEL_USERNAME entry, one will be added to the kernel’s
launch environment with the value of the gateway user.

This value is then used within the authorization and impersonation functionality.

Authorization

By default, all users are authorized to start kernels. This behavior can be adjusted when situations arise where
more control is required. Basic authorization can be expressed in two ways.

Authorized Users

The command-line or configuration file option: EnterpriseGatewayApp.authorized_users can be specified to contain a
list of user names indicating which users are permitted to launch kernels within the current gateway server.

On each kernel launched, the authorized users list is searched for the value of KERNEL_USERNAME (case-sensitive). If
the user is found in the list the kernel’s launch sequence continues, otherwise HTTP Error 403 (Forbidden) is raised
and the request fails.

Warning: Since the authorized_users option must be exhaustive, it should be used only in situations where a small
and limited set of users are allowed access and empty otherwise.

Unauthorized Users

The command-line or configuration file option: EnterpriseGatewayApp.unauthorized_users can be specified to contain a
list of user names indicating which users are NOT permitted to launch kernels within the current gateway server.
The unauthorized_users list is always checked prior to the authorized_users list. If the value of KERNEL_USERNAME
appears in the unauthorized_users list, the request is immediately failed with the same 403 (Forbidden) HTTP Error.

From a system security standpoint, privileged users (e.g., root and any users allowed sudo privileges) should be
added to this option.

Authorization Failures

It should be noted that the corresponding messages logged when each of the above authorization failures occur are
slightly different. This allows the administrator to discern from which authorization list the failure was generated.

Failures stemming from inclusion in the unauthorized_users list will include text similar to the following:

User 'bob' is not authorized to start kernel 'Spark - Python (YARN Client Mode)'. Ensure
KERNEL_USERNAME is set to an appropriate value and retry the request.

Failures stemming from exclusion from a non-empty authorized_users list will include text similar to the following:

User 'bob' is not in the set of users authorized to start kernel 'Spark - Python (YARN Client Mode)'. Ensure
KERNEL_USERNAME is set to an appropriate value and retry the request.

User Impersonation

The Enterprise Gateway server leverages other technologies to implement user impersonation when launching kernels. This
option is configured via two pieces of information: EG_IMPERSONATION_ENABLED and
KERNEL_USERNAME.

EG_IMPERSONATION_ENABLED indicates the intention that user impersonation should be performed and can also be conveyed
via the command-line boolean option EnterpriseGatewayApp.impersonation_enabled (default = False).

KERNEL_USERNAME is also conveyed within the environment of the kernel launch sequence where
its value is used to indicate the user that should be impersonated.

Impersonation in YARN Cluster Mode

In a cluster managed by the YARN resource manager, impersonation is implemented by leveraging kerberos, and thus require
this security option as a pre-requisite for user impersonation. When user impersonation is enabled, kernels are launched
with the --proxy-user ${KERNEL_USERNAME} which will tell YARN to launch the kernel in a container used by the provided
user name.

Note that, when using kerberos in a YARN managed cluster, the gateway user (elyra by default) needs to be set up as a
proxyuser superuser in hadoop configuration. Please refer to the
Hadoop documentation [https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/Superusers.html]
regarding the proper configuration steps.

SPNEGO Authentication to YARN APIs

When kerberos is enabled in a YARN managed cluster, the administration uis can be configured to require authentication/authorization
via SPENEGO. When running Enterprise Gateway in a environment configured this way, we need to convey an extra configuration
to enable the proper authorization when communicating with YARN via the YARN APIs.

YARN_ENDPOINT_SECURITY_ENABLED indicates the requirement to use SPNEGO authentication/authorization when connecting with the
YARN APIs and can also be conveyed via the command-line boolean option EnterpriseGatewayApp.yarn_endpoint_security_enabled
(default = False)

Impersonation in Standalone or YARN Client Mode

Impersonation performed in standalone or YARN cluster modes tends to take the form of using sudo to perform the
kernel launch as the target user. This can also be configured within the
run.sh [https://github.com/jupyter-incubator/enterprise_gateway/blob/master/etc/kernelspecs/spark_python_yarn_client/bin/run.sh]
script and requires the following:

	The gateway user (i.e., the user in which Enterprise Gateway is running) must be enabled to perform sudo operations
on each potential host. This enablement must also be done to prevent password prompts since Enterprise Gateway runs
in the background. Refer to your operating system documentation for details.

	Each user identified by KERNEL_USERNAME must be associated with an actual operating system user on each host.

	Once the gateway user is configured for sudo privileges it is strongly recommended that that user be included
in the set of unauthorized_users. Otherwise, kernels not configured for impersonation, or those requests that do not
include KERNEL_USERNAME, will run as the, now, highly privileged gateway user!

WARNING: Should impersonation be disabled after granting the gateway user elevated privileges, it is
strongly recommended those privileges be revoked (on all hosts) prior to starting kernels since those kernels
will run as the gateway user regardless of the value of KERNEL_USERNAME.

SSH Tunneling

Jupyter Enterprise Gateway is now configured to perform SSH tunneling on the five ZeroMQ kernel sockets as well as the
communication socket created within the launcher and used to perform remote and cross-user signalling functionality. SSH
tunneling is NOT enabled by default. Tunneling can be enabled/disabled via the environment variable EG_ENABLE_TUNNELING=False.
Note, there is no command-line or configuration file support for this variable.

Note that SSH by default validates host keys before connecting to remote hosts and the connection will fail for invalid
or unknown hosts. Enterprise Gateway honors this requirement, and invalid or unknown hosts will cause tunneling to fail.
Please perform necessary steps to validate all hosts before enabling SSH tunneling, such as:

	SSH to each node cluster and accept the host key properly

	Configure SSH to disable StrictHostKeyChecking

Securing Enterprise Gateway Server

Using SSL for encrypted communication

Enterprise Gateway supports Secure Sockets Layer (SSL) communication with its clients. With SSL enabled, all the
communication between the server and client are encrypted and highly secure.

	You can start Enterprise Gateway to communicate via a secure protocol mode by setting the certfile and keyfile
options with the command:

jupyter enterprisegateway --ip=0.0.0.0 --port_retries=0 --certfile=mycert.pem --keyfile=mykey.key

As server starts up, the log should reflect the following,

[EnterpriseGatewayApp] Jupyter Enterprise Gateway at https://localhost:8888

Note: Enterprise Gateway server is started with HTTPS instead of HTTP, meaning server side SSL is enabled.

TIP:
A self-signed certificate can be generated with openssl. For example, the following command will create a
certificate valid for 365 days with both the key and certificate data written to the same file:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout mykey.key -out mycert.pem

	With Enterprise Gateway server SSL enabled, now you need to configure the client side SSL, which is NB2KG
serverextension.

During Jupyter notebook server startup, export the following environment variables where NB2KG will access
during runtime:

export KG_CLIENT_CERT=${PATH_TO_PEM_FILE}
export KG_CLIENT_KEY=${PATH_TO_KEY_FILE}
export KG_CLIENT_CA=${PATH_TO_SELFSIGNED_CA}

Note: If using a self-signed certificate, you can set KG_CLIENT_CA same as KG_CLIENT_CERT.

Using Enterprise Gateway configuration file

You can also utilize the Enterprise Gateway configuration file to set static configurations for the server.

	If you do not already have a configuration file, generate a Enterprise Gateway configuration file by running the
following command:

jupyter enterprisegateway --generate-config

	By default, the configuration file will be generated ~/.jupyter/jupyter_enterprise_gateway_config.py.

	By default, all the configuration fields in jupyter_enterprise_gateway_config.py are commented out. To enable SSL
from the configuration file, modify the corresponding parameter to the appropriate value.

s,c.KernelGatewayApp.certfile = '/absolute/path/to/your/certificate/fullchain.pem'
s,c.KernelGatewayApp.keyfile = '/absolute/path/to/your/certificate/privatekey.key'

	Using configuration file achieves the same result as starting the server with --certfile and --keyfile, this way
provides better readability and debuggability.

After configuring the above, the communication between NB2KG and Enterprise Gateway is SSL enabled.

Use Cases

Jupyter Enterprise Gateway addresses specific use cases for different personas. We list a few below:

	As an administrator, I want to fix the bottleneck on the Kernel Gateway server due to large number of kernels
running on it and the size of each kernel (spark driver) process, by deploying the Enterprise Gateway, such that
kernels can be launched as managed resources within YARN, distributing the resource-intensive driver processes across
the YARN cluster, while still allowing the data analysts to leverage the compute power of a large YARN cluster.

	As an administrator, I want to have some user isolation such that user processes are protected against each
other and user can preserve and leverage their own environment, i.e. libraries and/or packages.

	As a data scientist, I want to run my notebook using the Enterprise Gateway such that I can free up resources
on my own laptop and leverage my company’s large YARN cluster to run my compute-intensive jobs.

	As a solution architect, I want to explore supporting a different resource manager with Enterprise Gateway,
e.g. Kubernetes, by extending and implementing a new ProcessProxy class such that I can easily
take advantage of specific functionality provided by the resource manager.

	As an administrator, I want to constrain applications to specific port ranges so I can more easily identify
issues and manage network configurations that adhere to my corporate policy.

	As an administrator, I want to constrain the number of active kernels that each of my users can have at any
given time.

System Architecture

Below are sections presenting details of the Enterprise Gateway internals and other related items.While we will attempt to maintain its consistency, the ultimate answers are in the code itself.

Enterprise Gateway Process Proxy Extensions

Enterprise Gateway is follow-on project to Jupyter Kernel Gateway with additional abilities to support
remote kernel sessions on behalf of multiple users within resource managed frameworks such as YARN. Enterprise
Gateway introduces these capabilities by extending the existing class hierarchies for KernelManager,
MultiKernelManager and KernelSpec classes, along with an additional abstraction known as a
process proxy.

Overview

At its basic level, a running kernel consists of two components for its communication - a set of
ports and a process.

Kernel Ports

The first component is a set of five zero-MQ ports used to convey the Jupyter protocol between the Notebook
and the underlying kernel. In addition to the 5 ports, is an IP address, a key, and a signature scheme
indicator used to interpret the key. These eight pieces of information are conveyed to the kernel via a
json file, known as the connection file.

In today’s JKG implementation, the IP address must be a local IP address meaning that the kernel cannot be
remote from the kernel gateway. The enforcement of this restriction is down in the jupyter_client module -
two levels below JKG.

This component is the core communication mechanism between the Notebook and the kernel. All aspects, including
life-cycle management, can occur via this component. The kernel process (below) comes into play only when
port-based communication becomes unreliable or additional information is required.

Kernel Process

When a kernel is launched, one of the fields of the kernel’s associated kernel specification is used to
identify a command to invoke. In today’s implementation, this command information, along with other
environment variables (also described in the kernel specification), is passed to popen() which returns
a process class. This class supports four basic methods following its creation:

	poll() to determine if the process is still running

	wait() to block the caller until the process has terminated

	send_signal(signum) to send a signal to the process

	kill() to terminate the process

As you can see, other forms of process communication can be achieved by abstracting the launch mechanism.

Remote Kernel Spec

The primary vehicle for indicating a given kernel should be handled in a different manner is the kernel
specification, otherwise known as the kernel spec. Enterprise Gateway introduces a new subclass of KernelSpec
named RemoteKernelSpec.

The RemoteKernelSpec class provides support for a new (and optional) stanza within the kernelspec file. This
stanza is named process_proxy and identifies the class that provides the kernel’s process abstraction (while
allowing for future extensions).

Here’s an example of a kernel specification that uses the DistributedProcessProxy class for its abstraction:

{
 "language": "scala",
 "display_name": "Spark - Scala (YARN Client Mode)",
 "process_proxy": {
 "class_name": "enterprise_gateway.services.processproxies.distributed.DistributedProcessProxy"
 },
 "env": {
 "SPARK_HOME": "/usr/hdp/current/spark2-client",
 "__TOREE_SPARK_OPTS__": "--master yarn --deploy-mode client --name ${KERNEL_ID:-ERROR__NO__KERNEL_ID}",
 "__TOREE_OPTS__": "",
 "LAUNCH_OPTS": "",
 "DEFAULT_INTERPRETER": "Scala"
 },
 "argv": [
 "/usr/local/share/jupyter/kernels/spark_scala_yarn_client/bin/run.sh",
 "--profile",
 "{connection_file}",
 "--RemoteProcessProxy.response-address",
 "{response_address}"
]
}

The RemoteKernelSpec class definition can be found in
remotekernelspec.py [https://github.com/jupyter-incubator/enterprise_gateway/blob/enterprise_gateway/enterprise_gateway/services/kernelspecs/remotekernelspec.py]

See the Process Proxy section for more details.

Remote Mapping Kernel Manager

RemoteMappingKernelManager is a subclass of JKG’s existing SeedingMappingKernelManager and provides two functions.

	It provides the vehicle for making the RemoteKernelManager class known and available.

	It overrides start_kernel to look at the target kernel’s kernel spec to see if it contains a remote process
proxy class entry. If so, it records the name of the class in its member variable to be made avaiable to the
kernel start logic.

Remote Kernel Manager

RemoteKernelManager is a subclass of JKG’s existing KernelGatewayIOLoopKernelManager class and provides the
primary integration points for remote process proxy invocations. It implements a number of methods which allow
Enterprise Gateway to circumvent functionality that might otherwise be prevented. As a result, some of these overrides may
not be necessary if lower layers of the Jupyter framework were modified. For example, some methods are required
because Jupyter makes assumptions that the kernel process is local.

Its primary functionality, however, is to override the _launch_kernel method (which is the method closest to
the process invocation) and instantiates the appropriate process proxy instance - which is then returned in
place of the process instance used in today’s implementation. Any interaction with the process then takes
place via the process proxy.

Both RemoteMappingKernelManager and RemoteKernelManager class definitions can be found in
remotemanager.py [https://github.com/jupyter-incubator/enterprise_gateway/blob/enterprise_gateway/enterprise_gateway/services/kernels/remotemanager.py]

Process Proxy

Process proxy classes derive from the abstract base class BaseProcessProxyABC - which defines the four basic
process methods. There are two immediate subclasses of BaseProcessProxyABC - LocalProcessProxy
and RemoteProcessProxy.

LocalProcessProxy is essentially a pass-through to the current implementation. KernelSpecs that do not contain
a process_proxy stanza will use LocalProcessProxy.

RemoteProcessProxy is an abstract base class representing remote kernel processes. Currently, there are two
built-in subclasses of RemoteProcessProxy - DistributedProcessProxy - representing a proof of concept
class that remotes a kernel via ssh and YarnClusterProcessProxy - representing the design target of launching
kernels hosted as yarn applications via yarn/cluster mode. These class definitions can be found in the
processproxies package [https://github.com/jupyter-incubator/enterprise_gateway/blob/enterprise_gateway/enterprise_gateway/services/processproxies].

[image: _images/process_proxy_hierarchy.png]Process Class Hierarchy

The process proxy constructor looks as follows:

def __init__(self, kernel_manager, proxy_config):

where

	kernel_manager is an instance of a RemoteKernelManager class that is associated with the
corresponding RemoteKernelSpec instance.

	proxy_config is a dictionary of configuration values present in the kernel spec’s json file. These
values can be used to override or amend various global configuration values on a per-kernel basis. See
Process Proxy Configuration for more information.

@abstractmethod
def launch_process(self, kernel_cmd, *kw):

where

	kernel_cmd is a list (argument vector) that should be invoked to launch the kernel. This parameter is
an artifact of the kernel manager _launch_kernel() method.

	**kw is a set key-word arguments which includes an env dictionary element consisting of the names
and values of which environment variables to set at launch time.

The launch_process() method is the primary method exposed on the Process Proxy classes. It’s responsible for
performing the appropriate actions relative to the target type. The process must be in a running state prior
to returning from this method - otherwise attempts to use the connections will not be successful since the
(remote) kernel needs to have created the sockets.

All process proxy subclasses should ensure BaseProcessProxyABC.launch_process() is called - which will automatically
place a variable named KERNEL_ID (consisting of the kernel’s unique ID) into the corresponding kernel’s environment
variable list since KERNEL_ID is a primary mechanism for associating remote applications to a specific kernel instance.

def poll(self):

The poll() method is used by the Jupyter framework to determine if the process is still alive. By default, the
framework’s heartbeat mechanism calls poll() every 3 seconds. This method returns None if the process is still running, False otherwise (per the popen() contract).

def wait(self):

The wait() method is used by the Jupyter framework when terminating a kernel. Its purpose is to block return
to the caller until the process has terminated. Since this could be a while, its best to return control in a
reasonable amount of time since the kernel instance is destroyed anyway. This method does not return a value.

def send_signal(self, signum):

The send_signal() method is used by the Jupyter framework to send a signal to the process. Currently, SIGINT (2)
(to interrupt the kernel) is the signal sent.

It should be noted that for normal processes - both local and remote - poll() and kill() functionality can
be implemented via send_signal with signum values of 0 and 9, respectively.

This method returns None if the process is still running, False otherwise.

def kill(self):

The kill() method is used by the Jupyter framework to terminate the kernel process. This method is only necessary
when the request to shutdown the kernel - sent via the control port of the zero-MQ ports - does not respond in
an appropriate amount of time.

This method returns None if the process is killed successfully, False otherwise.

RemoteProcessProxy

As noted above, RemoteProcessProxy is an abstract base class that derives from BaseProcessProxyABC. Subclasses
of RemoteProcessProxy must implement two methods - confirm_remote_startup() and handle_timeout():

@abstractmethod
def confirm_remote_startup(self, kernel_cmd, **kw):

where

	kernel_cmd is a list (argument vector) that should be invoked to launch the kernel. This parameter is an
artifact of the kernel manager _launch_kernel() method.

	**kw is a set key-word arguments.

confirm_remote_startup() is responsible for detecting that the remote kernel has been appropriately launched and is
ready to receive requests. This can include gather application status from the remote resource manager but is really
a function of having received the connection information from the remote kernel launcher. (See Launchers)

@abstractmethod
def handle_timeout(self):

handle_timeout() is responsible for detecting that the remote kernel has failed to startup in an acceptable time. It
should be called from confirm_remote_startup(). If the timeout expires, handle_timeout() should throw HTTP
Error 500 (Internal Server Error).

Kernel launch timeout expiration is expressed via the environment variable KERNEL_LAUNCH_TIMEOUT. If this
value does not exist, it defaults to the Enterprise Gateway process environment variable EG_KERNEL_LAUNCH_TIMEOUT - which
defaults to 30 seconds if unspecified. Since all KERNEL_ environment variables “flow” from NB2KG, the launch
timeout can be specified as a client attribute of the Notebook session.

YarnClusterProcessProxy

As part of its base offering, Enterprise Gateway provides an implementation of a process proxy
that communicates with the YARN resource manager that has been instructed to launcher a kernel
on one of its worker nodes. The node on which the kernel is launched is up to the resource
manager - which enables an optimized distribution of kernel resources.

Derived from RemoteProcessProxy, YarnClusterProcessProxy uses the yarn-api-client library
to locate the kernel and monitor its life-cycle. However, once the kernel has returned its
connection information, the primary kernel operations naturally take place over the ZeroMQ ports.

This process proxy is reliant on the --EnterpriseGatewayApp.yarn_endpoint command line
option or the EG_YARN_ENDPOINT environment variable to determine where the YARN resource manager is located.

DistributedProcessProxy

Like YarnClusterProcessProxy, Enterprise Gateway also provides an implementation of a basic
round-robin remoting mechanism that is part of the DistributedProcessProxy class. This class
uses the --EnterpriseGatewayApp.remote_hosts command line option (or EG_REMOTE_HOSTS
environment variable) to determine on which hosts a given kernel should be launched. It uses
a basic round-robin algorithm to index into the list of remote hosts for selecting the target
host. It then uses ssh to launch the kernel on the target host. As a result, all kernelspec
files must reside on the remote hosts in the same directory structure as on the Enterprise
Gateway server.

It should be noted that kernels launched with this process proxy run in YARN client mode - so their resources (within
the kernel process itself) are not managed by the YARN resource manager.

Process Proxy Configuration

Each kernel.json’s process-proxy stanza can specify an optional config stanza that is converted
into a dictionary of name/value pairs and passed as an argument to the each process-proxy constructor
relative to the class identified by the class_name entry.

How each dictionary entry is interpreted is completely a function of the constructor relative to that process-proxy
class or its super-class. For example, an alternate list of remote hosts has meaning to the DistributedProcessProxy but
not to its super-classes. As a result, the super-class constructors will not attempt to interpret that value.

In addition, certain dictionary entries can override or amend system-level configuration values set on the command-line, thereby
allowing administrators to tune behaviors down to the kernel level. For example, an administrator might want to
constrain python kernels configured to use specific resources to an entirely different set of hosts (and ports) that other
remote kernels might be targeting in order to isolate valuable resources. Similarly, an administrator might want to
only authorize specific users to a given kernel.

In such situations, one might find the following process-proxy stanza:

{
 "process_proxy": {
 "class_name": "enterprise_gateway.services.processproxies.distributed.DistributedProcessProxy",
 "config": {
 "remote_hosts": "priv_host1,priv_host2",
 "port_range": "40000..41000",
 "authorized_users": "bob,alice"
 }
 }
}

In this example, the kernel associated with this kernel.json file is relegated to hosts priv_host1 and priv_host2
where kernel ports will be restricted to a range between 40000 and 41000 and only users bob and alice can
launch such kernels (provided neither appear in the global set of unauthorized_users since denial takes precedence).

For a current enumeration of which system-level configuration values can be overridden or amended on a per-kernel basis
see Per-kernel Configuration Overrides.

Launchers

As noted above a kernel is considered started once the launch_process() method has conveyed its connection information
back to the Enterprise Gateway server process. Conveyance of connection information from a remote kernel is the
responsibility of the remote kernel launcher.

Launchers provide a means of normalizing behaviors across kernels while avoiding kernel modifications.Besides providing a location where connection file creation can occur, they also provide a ‘hook’
for other kinds of behaviors - like establishing virtual environments or sandboxes, providing
collaboration behavior, adhering to port range restrictions, etc.

There are three primary tasks of a launcher:

	Creation of the connection file on the remote (target) system

	Conveyance of the connection information back to the Enterprise Gateway process

	Invocation of the target kernel

Launchers are minimally invoked with two parameters (both of which are conveyed by the argv stanza of the
corresponding kernel.json file) - a path to the non-existent connection file represented by the
placeholder {connection_file} and a response address consisting of the Enterprise Gateway server IP and port on which
to return the connection information similarly represented by the placeholder {response_address}.

Depending on the target kernel, the connection file parameter may or may not be identified by an
argument name. However, the response address is identified by the parameter --RemoteProcessProxy.response_address. Its
value ({response_address}) consists of a string of the form <IPV4:port> where the IPV4 address points
back to the Enterprise Gateway server - which is listening for a response on the provided port.

Here’s a kernel.json [https://github.com/jupyter-incubator/enterprise_gateway/blob/enterprise_gateway/etc/kernelspecs/spark_python_yarn_cluster/kernel.json]
file illustrating these parameters…

{
 "language": "python",
 "display_name": "Spark - Python (YARN Cluster Mode)",
 "process_proxy": {
 "class_name": "enterprise_gateway.services.processproxies.yarn.YarnClusterProcessProxy"
 },
 "env": {
 "SPARK_HOME": "/usr/hdp/current/spark2-client",
 "SPARK_OPTS": "--master yarn --deploy-mode cluster --name ${KERNEL_ID:-ERROR__NO__KERNEL_ID} --conf spark.yarn.submit.waitAppCompletion=false",
 "LAUNCH_OPTS": ""
 },
 "argv": [
 "/usr/local/share/jupyter/kernels/spark_python_yarn_cluster/bin/run.sh",
 "{connection_file}",
 "--RemoteProcessProxy.response-address",
 "{response_address}"
]
}

Other options supported by launchers include:

	--RemoteProcessProxy.port-range {port_range} - passes configured port-range to launcher where launcher applies
that range to kernel ports. The port-range may be configured globally or on a per-kernelspec basis, as previously
described.

	--RemoteProcessProxy.spark-context-initialization-mode [lazy|eager|none] - indicates the timeframe in which the
spark context will be created.

	lazy (default) attempts to defer initialization as late as possible - although can vary depending on the
underlying kernel and launcher implementation.

	eager attempts to create the spark context as soon as possible.

	none skips spark context creation altogether.

Note that some launchers may not be able to support all modes. For example, the scala launcher uses the Toree
kernel - which currently assumes a spark context will exist. As a result, a mode of none doesn’t apply.
Similarly, the lazy and eager modes in the Python launcher are essentially the same, with the spark context
creation occurring immediately, but in the background thereby minimizing the kernel’s startup time.

Kernel.json files also include a LAUNCH_OPTS: section in the env stanza to allow for custom
parameters to be conveyed in the launcher’s environment. LAUNCH_OPTS are then referenced in
the run.sh [https://github.com/jupyter-incubator/enterprise_gateway/blob/enterprise_gateway/etc/kernelspecs/spark_python_yarn_cluster/bin/run.sh]
script as the initial arguments to the launcher
(see launch_ipykernel.py [https://github.com/jupyter-incubator/enterprise_gateway/blob/enterprise_gateway/etc/kernel-launchers/python/scripts/launch_ipykernel.py]) …

eval exec \
 "${SPARK_HOME}/bin/spark-submit" \
 "${SPARK_OPTS}" \
 "${PROG_HOME}/scripts/launch_ipykernel.py" \
 "${LAUNCH_OPTS}" \
 "$@"

Extending Enterprise Gateway

Theoretically speaking, enabling a kernel for use in other frameworks amounts to the following:

	Build a kernel specification file that identifies the process proxy class to be used.

	Implement the process proxy class such that it supports the four primitive functions of
poll(), wait(), send_signal(signum) and kill() along with launch_process().

	If the process proxy corresponds to a remote process, derive the process proxy class from
RemoteProcessProxy and implement confirm_remote_startup() and handle_timeout().

	Insert invocation of a launcher (if necessary) which builds the connection file and
returns its contents on the {response_address} socket.

Configuration options

Jupyter Enterprise Gateway adheres to the
Jupyter common configuration approach [https://jupyter.readthedocs.io/en/latest/projects/config.html]
. You can configure an instance of Enterprise Gateway using:

	A configuration file

	Command line parameters

	Environment variables

Note that because Enterprise Gateway is built on Kernel Gateway, all of the KernelGatewayApp options
can be specified as EnterpriseGatewayApp options. In addition, the KG_ prefix of inherited environment
variables has also been preserved, while those variables introduced by Enterprise Gateway will be
prefixed with EG_.

To generate a template configuration file, run the following:

jupyter enterprisegateway --generate-config

To see the same configuration options at the command line, run the following:

jupyter enterprisegateway --help-all

A snapshot of this help appears below for ease of reference on the web.

Jupyter Enterprise Gateway

Provisions remote Jupyter kernels and proxies HTTP/Websocket traffic to them.

Options

Arguments that take values are actually convenience aliases to full
Configurables, whose aliases are listed on the help line. For more information
on full configurables, see '--help-all'.

--debug
 set log level to logging.DEBUG (maximize logging output)
--generate-config
 generate default config file
-y
 Answer yes to any questions instead of prompting.
--log-level=<Enum> (Application.log_level)
 Default: 30
 Choices: (0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL')
 Set the log level by value or name.
--config=<Unicode> (JupyterApp.config_file)
 Default: ''
 Full path of a config file.
--ip=<Unicode> (KernelGatewayApp.ip)
 Default: '127.0.0.1'
 IP address on which to listen (KG_IP env var)
--port=<Int> (KernelGatewayApp.port)
 Default: 8888
 Port on which to listen (KG_PORT env var)
--port_retries=<Int> (KernelGatewayApp.port_retries)
 Default: 50
 Number of ports to try if the specified port is not available
 (KG_PORT_RETRIES env var)
--api=<Unicode> (KernelGatewayApp.api)
 Default: 'kernel_gateway.jupyter_websocket'
 Controls which API to expose, that of a Jupyter notebook server, the seed
 notebook's, or one provided by another module, respectively using values
 'kernel_gateway.jupyter_websocket', 'kernel_gateway.notebook_http', or
 another fully qualified module name (KG_API env var)
--seed_uri=<Unicode> (KernelGatewayApp.seed_uri)
 Default: None
 Runs the notebook (.ipynb) at the given URI on every kernel launched. No
 seed by default. (KG_SEED_URI env var)
--keyfile=<Unicode> (KernelGatewayApp.keyfile)
 Default: None
 The full path to a private key file for usage with SSL/TLS. (KG_KEYFILE env
 var)
--certfile=<Unicode> (KernelGatewayApp.certfile)
 Default: None
 The full path to an SSL/TLS certificate file. (KG_CERTFILE env var)
--client-ca=<Unicode> (KernelGatewayApp.client_ca)
 Default: None
 The full path to a certificate authority certificate for SSL/TLS client
 authentication. (KG_CLIENT_CA env var)

Class parameters

Parameters are set from command-line arguments of the form:
`--Class.trait=value`. This line is evaluated in Python, so simple expressions
are allowed, e.g.:: `--C.a='range(3)'` For setting C.a=[0,1,2].

EnterpriseGatewayApp options

--EnterpriseGatewayApp.allow_credentials=<Unicode>
 Default: ''
 Sets the Access-Control-Allow-Credentials header. (KG_ALLOW_CREDENTIALS env
 var)
--EnterpriseGatewayApp.allow_headers=<Unicode>
 Default: ''
 Sets the Access-Control-Allow-Headers header. (KG_ALLOW_HEADERS env var)
--EnterpriseGatewayApp.allow_methods=<Unicode>
 Default: ''
 Sets the Access-Control-Allow-Methods header. (KG_ALLOW_METHODS env var)
--EnterpriseGatewayApp.allow_origin=<Unicode>
 Default: ''
 Sets the Access-Control-Allow-Origin header. (KG_ALLOW_ORIGIN env var)
--EnterpriseGatewayApp.answer_yes=<Bool>
 Default: False
 Answer yes to any prompts.
--EnterpriseGatewayApp.api=<Unicode>
 Default: 'kernel_gateway.jupyter_websocket'
 Controls which API to expose, that of a Jupyter notebook server, the seed
 notebook's, or one provided by another module, respectively using values
 'kernel_gateway.jupyter_websocket', 'kernel_gateway.notebook_http', or
 another fully qualified module name (KG_API env var)
--EnterpriseGatewayApp.auth_token=<Unicode>
 Default: ''
 Authorization token required for all requests (KG_AUTH_TOKEN env var)
--EnterpriseGatewayApp.authorized_users=<Set>
 Default: set()
 Comma-separated list of user names (e.g., ['bob','alice']) against which
 KERNEL_USERNAME will be compared. Any match (case-sensitive) will allow the
 kernel's launch, otherwise an HTTP 403 (Forbidden) error will be raised.
 The set of unauthorized users takes precedence. This option should be used
 carefully as it can dramatically limit who can launch kernels.
 (EG_AUTHORIZED_USERS env var - non-bracketed, just comma-separated)
--EnterpriseGatewayApp.base_url=<Unicode>
 Default: '/'
 The base path for mounting all API resources (KG_BASE_URL env var)
--EnterpriseGatewayApp.certfile=<Unicode>
 Default: None
 The full path to an SSL/TLS certificate file. (KG_CERTFILE env var)
--EnterpriseGatewayApp.client_ca=<Unicode>
 Default: None
 The full path to a certificate authority certificate for SSL/TLS client
 authentication. (KG_CLIENT_CA env var)
--EnterpriseGatewayApp.conductor_endpoint=<Unicode>
 Default: None
 The http url for accessing the Conductor REST API. (EG_CONDUCTOR_ENDPOINT
 env var)
--EnterpriseGatewayApp.config_file=<Unicode>
 Default: ''
 Full path of a config file.
--EnterpriseGatewayApp.config_file_name=<Unicode>
 Default: ''
 Specify a config file to load.
--EnterpriseGatewayApp.default_kernel_name=<Unicode>
 Default: ''
 Default kernel name when spawning a kernel (KG_DEFAULT_KERNEL_NAME env var)
--EnterpriseGatewayApp.env_process_whitelist=<List>
 Default: []
 Environment variables allowed to be inherited from the spawning process by
 the kernel
--EnterpriseGatewayApp.expose_headers=<Unicode>
 Default: ''
 Sets the Access-Control-Expose-Headers header. (KG_EXPOSE_HEADERS env var)
--EnterpriseGatewayApp.force_kernel_name=<Unicode>
 Default: ''
 Override any kernel name specified in a notebook or request
 (KG_FORCE_KERNEL_NAME env var)
--EnterpriseGatewayApp.generate_config=<Bool>
 Default: False
 Generate default config file.
--EnterpriseGatewayApp.impersonation_enabled=<Bool>
 Default: False
 Indicates whether impersonation will be performed during kernel launch.
 (EG_IMPERSONATION_ENABLED env var)
--EnterpriseGatewayApp.ip=<Unicode>
 Default: '127.0.0.1'
 IP address on which to listen (KG_IP env var)
--EnterpriseGatewayApp.kernel_manager_class=<Type>
 Default: 'enterprise_gateway.services.kernels.remotemanager.RemoteMapp...
 The kernel manager class to use. Should be a subclass of
 `notebook.services.kernels.MappingKernelManager`.
--EnterpriseGatewayApp.kernel_spec_manager_class=<Type>
 Default: 'enterprise_gateway.services.kernelspecs.remotekernelspec.Rem...
 The kernel spec manager class to use. Should be a subclass of
 `jupyter_client.kernelspec.KernelSpecManager`.
--EnterpriseGatewayApp.keyfile=<Unicode>
 Default: None
 The full path to a private key file for usage with SSL/TLS. (KG_KEYFILE env
 var)
--EnterpriseGatewayApp.log_datefmt=<Unicode>
 Default: '%Y-%m-%d %H:%M:%S'
 The date format used by logging formatters for %(asctime)s
--EnterpriseGatewayApp.log_format=<Unicode>
 Default: '[%(name)s]%(highlevel)s %(message)s'
 The Logging format template
--EnterpriseGatewayApp.log_level=<Enum>
 Default: 30
 Choices: (0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL')
 Set the log level by value or name.
--EnterpriseGatewayApp.max_age=<Unicode>
 Default: ''
 Sets the Access-Control-Max-Age header. (KG_MAX_AGE env var)
--EnterpriseGatewayApp.max_kernels=<Int>
 Default: None
 Limits the number of kernel instances allowed to run by this gateway.
 Unbounded by default. (KG_MAX_KERNELS env var)
--EnterpriseGatewayApp.max_kernels_per_user=<Int>
 Default: -1
 Specifies the maximum number of kernels a user can have active
 simultaneously. A value of -1 disables enforcement.
 (EG_MAX_KERNELS_PER_USER env var)
--EnterpriseGatewayApp.port=<Int>
 Default: 8888
 Port on which to listen (KG_PORT env var)
--EnterpriseGatewayApp.port_range=<Unicode>
 Default: '0..0'
 Specifies the lower and upper port numbers from which ports are created.
 The bounded values are separated by '..' (e.g., 33245..34245 specifies a
 range of 1000 ports to be randomly selected). A range of zero (e.g.,
 33245..33245 or 0..0) disables port-range enforcement. (EG_PORT_RANGE env
 var)
--EnterpriseGatewayApp.port_retries=<Int>
 Default: 50
 Number of ports to try if the specified port is not available
 (KG_PORT_RETRIES env var)
--EnterpriseGatewayApp.prespawn_count=<Int>
 Default: None
 Number of kernels to prespawn using the default language. No prespawn by
 default. (KG_PRESPAWN_COUNT env var)
--EnterpriseGatewayApp.remote_hosts=<List>
 Default: ['localhost']
 Bracketed comma-separated list of hosts on which DistributedProcessProxy
 kernels will be launched e.g., ['host1','host2']. (EG_REMOTE_HOSTS env var -
 non-bracketed, just comma-separated)
--EnterpriseGatewayApp.seed_uri=<Unicode>
 Default: None
 Runs the notebook (.ipynb) at the given URI on every kernel launched. No
 seed by default. (KG_SEED_URI env var)
--EnterpriseGatewayApp.trust_xheaders=<CBool>
 Default: False
 Use x-* header values for overriding the remote-ip, useful when application
 is behing a proxy. (KG_TRUST_XHEADERS env var)
--EnterpriseGatewayApp.unauthorized_users=<Set>
 Default: {'root'}
 Comma-separated list of user names (e.g., ['root','admin']) against which
 KERNEL_USERNAME will be compared. Any match (case-sensitive) will prevent
 the kernel's launch and result in an HTTP 403 (Forbidden) error.
 (EG_UNAUTHORIZED_USERS env var - non-bracketed, just comma-separated)
--EnterpriseGatewayApp.yarn_endpoint=<Unicode>
 Default: 'http://localhost:8088/ws/v1/cluster'
 The http url for accessing the YARN Resource Manager. (EG_YARN_ENDPOINT env
 var)
--EnterpriseGatewayApp.yarn_endpoint_security_enabled=<Bool>
 Default: False
 Is YARN Kerberos/SPNEGO Security enabled (True/False).
 (EG_YARN_ENDPOINT_SECURITY_ENABLED env var)

NotebookHTTPPersonality options

--NotebookHTTPPersonality.allow_notebook_download=<Bool>
 Default: False
 Optional API to download the notebook source code in notebook-http mode,
 defaults to not allow
--NotebookHTTPPersonality.cell_parser=<Unicode>
 Default: 'kernel_gateway.notebook_http.cell.parser'
 Determines which module is used to parse the notebook for endpoints and
 documentation. Valid module names include
 'kernel_gateway.notebook_http.cell.parser' and
 'kernel_gateway.notebook_http.swagger.parser'. (KG_CELL_PARSER env var)
--NotebookHTTPPersonality.comment_prefix=<Dict>
 Default: {'scala': '//', None: '#'}
 Maps kernel language to code comment syntax
--NotebookHTTPPersonality.static_path=<Unicode>
 Default: None
 Serve static files on disk in the given path as /public, defaults to not
 serve

JupyterWebsocketPersonality options

--JupyterWebsocketPersonality.env_whitelist=<List>
 Default: []
 Environment variables allowed to be set when a client requests a new kernel
--JupyterWebsocketPersonality.list_kernels=<Bool>
 Default: False
 Permits listing of the running kernels using API endpoints /api/kernels and
 /api/sessions (KG_LIST_KERNELS env var). Note: Jupyter Notebook allows this
 by default but kernel gateway does not.

Addtional supported environment variables

 EG_ENABLE_TUNNELING=False
 Indicates whether tunneling (via ssh) of the kernel and communication ports
 is enabled (True) or not (False).

 EG_KERNEL_LOG_DIR=/tmp
 The directory used during remote kernel launches of DistributedProcessProxy
 kernels. Files in this directory will be of the form kernel-<kernel_id>.log.

 EG_KERNEL_LAUNCH_TIMEOUT=30
 The time (in seconds) Enterprise Gateway will wait for a kernel's startup
 completion status before deeming the startup a failure, at which time a second
 startup attempt will take place. If a second timeout occurs, Enterprise
 Gateway will report a failure to the client.

 EG_MAX_PORT_RANGE_RETRIES=5
 The number of attempts made to locate an available port within the specified
 port range. Only applies when --EnterpriseGatewayApp.port_range
 (or EG_PORT_RANGE) has been specified or is in use for the given kernel.

 EG_MIN_PORT_RANGE_SIZE=1000
 The minimum port range size permitted when --EnterpriseGatewayApp.port_range
 (or EG_PORT_RANGE) is specified or is in use for the given kernel. Port ranges
 reflecting smaller sizes will result in a failure to launch the corresponding
 kernel (since port-range can be specified within individual kernel specifications).

 EG_SSH_PORT=22
 The port number used for ssh operations for installations choosing to
 configure the ssh server on a port other than the default 22.

 EG_LOCAL_IP_BLACKLIST=''
 A comma-separated list of local IPv4 addresses (or regular expressions) that
 should not be used when determining the response address used to convey connection
 information back to Enterprise Gateway from a remote kernel. In some cases, other
 network interfaces (e.g., docker with 172.17.0.*) can interfere - leading to
 connection failures during kernel startup.
 Example: EG_LOCAL_IP_BLACKLIST=172.17.0.*,192.168.0.27 will eliminate the use of
 all addresses in 172.17.0 as well as 192.168.0.27

The following environment variables may be useful for troubleshooting:

 EG_SSH_LOG_LEVEL=WARNING
 By default, the paramiko ssh library is too verbose for its logging. This
 value can be adjusted in situations where ssh troubleshooting may be warranted.

 EG_YARN_LOG_LEVEL=WARNING
 By default, the yarn-api-client library is too verbose for its logging. This
 value can be adjusted in situations where YARN troubleshooting may be warranted.

 EG_MAX_POLL_ATTEMPTS=10
 Polling is used in various places during life-cycle management operations - like
 determining if a kernel process is still alive, stopping the process, waiting
 for the process to terminate, etc. As a result, it may be useful to adjust
 this value during those kinds of troubleshooting scenarios, although that
 should rarely be necessary.

 EG_POLL_INTERVAL=0.5
 The interval (in seconds) to wait before checking poll results again.

 EG_SOCKET_TIMEOUT=5.0
 The time (in seconds) the enterprise gateway will wait on its connection
 file socket waiting on return from a remote kernel launcher. Upon timeout, the
 operation will be retried immediately, until the overall time limit has been exceeded.

Per-kernel Configuration Overrides

As mentioned in the overview of Process Proxy Configuration
capabilities, it’s possible to override or amend specific system-level configuration values on a per-kernel basis.
The following enumerates the set of per-kernel configuration overrides:

	remote_hosts: This process proxy configuration entry can be used to override --EnterpriseGatewayApp.remote_hosts.
Any values specified in the config dictionary override the globally defined values. These apply to all
DistributedProcessProxy kernels.

	yarn_endpoint: This process proxy configuration entry can be used to override --EnterpriseGatewayApp.yarn_endpoint.
Any values specified in the config dictionary override the globally defined values. These apply to all
YarnClusterProcessProxy kernels. Note that you’ll likely be required to specify a different HADOOP_CONF_DIR
setting in the kernel.json’s env stanza in order of the spark-submit command to target the appropriate YARN cluster.

	authorized_users: This process proxy configuration entry can be used to override
--EnterpriseGatewayApp.authorized_users. Any values specified in the config dictionary override the globally
defined values. These values apply to all process-proxy kernels, including the default LocalProcessProxy. Note
that the typical use-case for this value is to not set --EnterpriseGatewayApp.authorized_users at the global level,
but then restrict access at the kernel level.

	unauthorized_users: This process proxy configuration entry can be used to amend
--EnterpriseGatewayApp.unauthorized_users. Any values specified in the config dictionary are added to the
globally defined values. As a result, once a user is denied access at the global level, they will always be denied
access at the kernel level. These values apply to all process-proxy kernels, including the default
LocalProcessProxy.

	port_range: This process proxy configuration entry can be used to override --EnterpriseGatewayApp.port_range.
Any values specified in the config dictionary override the globally defined values. These apply to all
RemoteProcessProxy kernels.

Troubleshooting

	I’m trying to launch a (Python/Scala/R) kernel in YARN Cluster Mode but it failed with
a “Kernel error” and State: ‘FAILED’.

	Check the output from Enterprise Gateway for an error message. If an applicationId was
generated, make a note of it. For example, you can locate the applicationId
application_1506552273380_0011 from the following snippet of message:

[D 2017-09-28 17:13:22.675 EnterpriseGatewayApp] 13: State: 'ACCEPTED', Host: 'burna2.yourcompany.com', KernelID: '28a5e827-4676-4415-bbfc-ac30a0dcc4c3', ApplicationID: 'application_1506552273380_0011'
17/09/28 17:13:22 INFO YarnClientImpl: Submitted application application_1506552273380_0011
17/09/28 17:13:22 INFO Client: Application report for application_1506552273380_0011 (state: ACCEPTED)
17/09/28 17:13:22 INFO Client:
 client token: N/A
 diagnostics: AM container is launched, waiting for AM container to Register with RM
 ApplicationMaster host: N/A
 ApplicationMaster RPC port: -1
 queue: default
 start time: 1506644002471
 final status: UNDEFINED
 tracking URL: http://burna1.yourcompany.com:8088/proxy/application_1506552273380_0011/

	Lookup the YARN log for that applicationId in the YARN ResourceManager UI: [image: _images/yarnui.jpg]YARN ResourceManager UI

	Drill down from the applicationId to find logs for the failed attempts and take appropriate
actions. For example, for the error below,

Traceback (most recent call last):
 File "launch_ipykernel.py", line 7, in <module>
 from ipython_genutils.py3compat import str_to_bytes
 ImportError: No module named ipython_genutils.py3compat

Simply running “pip install ipython_genutils” should fix the problem. If Anaconda is
installed, make sure the environment variable for Python, i.e. PYSPARK_PYTHON, is
properly configured in the kernelspec and matches the actual Anaconda installation
directory.

	I’m trying to launch a (Python/Scala/R) kernel in YARN Client Mode but it failed with
a “Kernel error” and an AuthenticationException.

[E 2017-09-29 11:13:23.277 EnterpriseGatewayApp] Exception 'AuthenticationException' occurred
when creating a SSHClient connecting to 'xxx.xxx.xxx.xxx' with user 'elyra',
message='Authentication failed.'.

This error indicates that the password-less ssh may not be properly configured. Password-less
ssh needs to be configured on the node that the Enterprise Gateway is running on to all other
worker nodes.

You might also see an SSHException indicating a similar issue.

[E 2017-09-29 11:13:23.277 EnterpriseGatewayApp] Exception 'SSHException' occurred
when creating a SSHClient connecting to 'xxx.xxx.xxx.xxx' with user 'elyra',
message='No authentication methods available.'.

In general, you can look for more information in the kernel log for YARN Client
kernels. The default location is /tmp with a filename of kernel-<kernel_id>.log. The location
can be configured using the environment variable EG_KERNEL_LOG_DIR during Enterprise Gateway start up.

See Starting Enterprise Gateway for an
example of starting the Enterprise Gateway from a script and
Supported Environment Variables
for a list of configurable environment variables.

	I’m trying to launch a (Python/Scala/R) kernel in YARN Client Mode with SSH tunneling enabled
but it failed with a “Kernel error” and a SSHException.

[E 2017-10-26 11:48:20.922 EnterpriseGatewayApp] The following exception occurred waiting
for connection file response for KernelId 'da3d0dde-9de1-44b1-b1b4-e6f3cf52dfb9' on host
'remote-host-name': The authenticity of the host can't be established.

This error indicates that fingerprint for the ECDSA key of the remote host has not been added
to the list of known hosts from where the SSH tunnel is being established.

For example, if the Enterprise Gateway is running on node1 under service-user jdoe and
environment variable EG_REMOTE_HOSTS is set to node2,node3,node4, then the Kernels can be
launched on any of those hosts and a SSH tunnel will be established between node1 and
any of the those hosts.

To address this issue, you need to perform a one-time step that requires you to login to
node1 as jdoe and manually SSH into each of the remote hosts and accept the fingerprint
of the ECDSA key of the remote host to be added to the list of known hosts as shown below:

[jdoe@node1 ~]$ ssh node2
The authenticity of host 'node2 (172.16.207.191)' can't be established.
ECDSA key fingerprint is SHA256:Mqi3txf4YiRC9nXg8a/4gQq5vC4SjWmcN1V5Z0+nhZg.
ECDSA key fingerprint is MD5:bc:4b:b2:39:07:98:c1:0b:b4:c3:24:38:92:7a:2d:ef.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'node2,172.16.207.191' (ECDSA) to the list of known hosts.
[jdoe@node2 ~] exit

Repeat the aforementioned step as jdoe on node1 for each of the hosts listed in
EG_REMOTE_HOSTS and restart Enterprise Gateway.

	I’m trying to launch a (Python/Scala/R) kernel but it failed with TypeError: Incorrect padding.

Traceback (most recent call last):
 File "/opt/anaconda2/lib/python2.7/site-packages/tornado/web.py", line 1512, in _execute
 result = yield result
 File "/opt/anaconda2/lib/python2.7/site-packages/tornado/gen.py", line 1055, in run
 value = future.result()

 File "/opt/anaconda2/lib/python2.7/site-packages/enterprise_gateway/services/kernels/remotemanager.py", line 125, in _launch_kernel
 return self.process_proxy.launch_process(kernel_cmd, **kw)
 File "/opt/anaconda2/lib/python2.7/site-packages/enterprise_gateway/services/processproxies/yarn.py", line 63, in launch_process
 self.confirm_remote_startup(kernel_cmd, **kw)
 File "/opt/anaconda2/lib/python2.7/site-packages/enterprise_gateway/services/processproxies/yarn.py", line 174, in confirm_remote_startup
 ready_to_connect = self.receive_connection_info()
 File "/opt/anaconda2/lib/python2.7/site-packages/enterprise_gateway/services/processproxies/processproxy.py", line 565, in receive_connection_info
 raise e
TypeError: Incorrect padding

To address this issue, first ensure that the launchers used for each kernel are derived
from the same release as the Enterprise Gateway server. Next ensure that pycrypto 2.6.1
or later is installed on all hosts using either pip install or conda install as shown below:

[jdoe@node1 ~]$ pip uninstall pycrypto
[jdoe@node1 ~]$ pip install pycrypto

or

[jdoe@node1 ~]$ conda install pycrypto

This should be done on the host running Enterprise Gateway as well as all the remote hosts
on which the kernel is launched.

	I’m trying to use a notebook with user impersonation on a Kerberos enabled cluster but it fails to authenticate.

When using user impersonation in a YARN cluster with Kerberos authentication, if Kerberos is not
setup properly you will usually see the following warning that will keep a notebook from connecting:

WARN Client: Exception encountered while connecting to the server : javax.security.sasl.SaslException: GSS initiate failed
[Caused by GSSException: No valid credentials provided (Mechanism level: Failed to find any Kerberos tgt)]

The most common cause for this WARN is when the user that started Enterprise Gateway is not authenticated
with Kerberos. This can happen when the user has either not run kinit or their previous ticket has expired.

	The Kernel keeps dying when processing jobs that require large amount of resources (e.g. large files)

This is usually seen when you are trying to use more resources then what is available for your kernel.
To address this issue, increase the amount of memory available for your YARN application or another
Resource Manager managing the kernel.

	I’m trying to launch a (Python/Scala/R) kernel with port range but it failed with RuntimeError: Invalid port range .

Traceback (most recent call last):
 File "/opt/anaconda2/lib/python2.7/site-packages/tornado/web.py", line 1511, in _execute
 result = yield result
 File "/opt/anaconda2/lib/python2.7/site-packages/tornado/gen.py", line 1055, in run
 value = future.result()

 File "/opt/anaconda2/lib/python2.7/site-packages/enterprise_gateway/services/processproxies/processproxy.py", line 478, in __init__
 super(RemoteProcessProxy, self).__init__(kernel_manager, proxy_config)
 File "/opt/anaconda2/lib/python2.7/site-packages/enterprise_gateway/services/processproxies/processproxy.py", line 87, in __init__
 self._validate_port_range(proxy_config)
 File "/opt/anaconda2/lib/python2.7/site-packages/enterprise_gateway/services/processproxies/processproxy.py", line 407, in _validate_port_range
 "port numbers is (1024, 65535).".format(self.lower_port))
RuntimeError: Invalid port range '1000..2000' specified. Range for valid port numbers is (1024, 65535).

To address this issue, make sure that the specified port range does not overlap with TCP’s well-known
port range of (0, 1024].

Debugging Jupyter Enterprise Gateway

Configuring your IDE for debugging Jupyter Enterprise Gateway

While your mileage may vary depending on which IDE you are using, the steps below (which was created
using PyChar as an example) should be useful for configuring a debuging session for EG with minimum
adjustments for different IDEs.

Creating a new Debug Configuration

Go to Run->Edit Configuration and create a new python configuration with the following settings:

[image: _images/debug_configuration.png]Enterprise Gateway debug configuration

Script Path:

/Users/lresende/opensource/jupyter/elyra/scripts/jupyter-enterprisegateway

Parameters:

--ip=0.0.0.0
--log-level=DEBUG
--EnterpriseGatewayApp.yarn_endpoint=“http://elyra-fyi-node-1.fyre.ibm.com:8088/ws/v1/cluster”
--EnterpriseGatewayApp.remote_hosts=['localhost']

Environment Variables:

EG_ENABLE_TUNNELING=False

Working Directotry:

/Users/lresende/opensource/jupyter/elyra/scripts

Running in debug mode

Now that you have handled the necessary configuration, use Run-Debug and select the debug configuration
you just created and happy debuging.

Contributing to Jupyter Enterprise Gateway

Thank you for your interest in Jupyter Enterprise Gateway! If you would like to contribute to the
project please first take a look at the
Project Jupyter Contributor Documentation [https://jupyter.readthedocs.io/en/latest/contributor/content-contributor.html].

Prior to your contribution, we strongly recommend getting acquainted with Enterprise Gateway by checking
out the Development Workflow and System Architecture pages.

Development Workflow

Here are instructions for setting up a development environment for the Jupyter Enterprise Gateway [https://github.com/jupyter-incubator/enterprise_gateway]
server. It also includes common steps in the developer workflow such as building Enterprise Gateway,
running tests, building docs, packaging kernelspecs, etc.

Prerequisites

Install miniconda [https://conda.io/miniconda.html] and GNU make [https://www.gnu.org/software/make/] on your system.

Clone the repo

Clone this repository in a local directory.

make a directory under ~ to put source
mkdir -p ~/projects
cd !$

clone this repo
git clone https://github.com/jupyter-incubator/enterprise_gateway.git

Make

Enterprise Gateway’s build environment is centered around make and the corresponding Makefile.Entering make with no parameters yields the following:

activate eval `make activate`
clean Make a clean source tree
dev Make a server in jupyter_websocket mode
dist Make binary and source distribution to dist folder
docker-clean-enterprise-gateway Remove elyra/enterprise-gateway:dev docker image
docker-clean-nb2kg Remove elyra/nb2kg:dev docker image
docker-clean-yarn-spark Remove elyra/yarn-spark:2.1.0 docker image
docker-clean Remove docker images
docker-image-enterprise-gateway Build elyra/enterprise-gateway:dev docker image
docker-image-nb2kg Build elyra/nb2kg:dev docker image
docker-image-yarn-spark Build elyra/yarn-spark:2.1.0 docker image
docker-images Build docker images
docs Make HTML documentation
env Make a dev environment
install Make a conda env with dist/*.whl and dist/*.tar.gz installed
itest Run integration tests (optionally) against docker container
kernelspecs Create an archive with sample kernelspecs
nuke Make clean + remove conda env
release Make a wheel + source release on PyPI
test Run unit tests

Some of the more useful commands are listed below.

Build a conda environment

Build a Python 3 conda environment containing the necessary dependencies for
running the enterprise gateway server, running tests, and building documentation.

make env

By default, the env built will be named enterprise-gateway-dev. To produce a different conda env,
you can specify the name via the ENV= parameter.

make ENV=my-conda-env env

Note: If using a non-default conda env, all make commands should include the ENV= parameter,
otherwise the command will use the default environment.

Build the wheel file

Build a wheel file that can then be installed via pip install

make dist

Build the kernelspec tar file

Enterprise Gateway includes two sets of kernelspecs for each of the three primary kernels: IPython,IR,
and Toree to demonstrate remote kernels and their corresponding launchers. One set uses the
DistributedProcessProxy while the other uses the YarnClusterProcessProxy. The following makefile
target produces a tar file (enterprise_gateway_kernelspecs.tar.gz) in the dist directory.

make kernelspecs

Note: Because the scala launcher requires a jar file, make kernelspecs requires the use of sbt to build the scala launcher jar. Please consult the sbt site [http://www.scala-sbt.org/] for directions to install/upgrade sbt on your platform. We currently prefer the use of 1.0.3.

Run the Enterprise Gateway server

Run an instance of the Enterprise Gateway server.

make dev

Then access the running server at the URL printed in the console.

Build the docs

Run Sphinx to build the HTML documentation.

make docs

Run the unit tests

Run the unit test suite.

make test

Run the integration tests

Run the integration tests suite. T

hese tests will bootstrap a docker image with Apache Spark using YARN resource manager and
Jupyter Enterprise Gateway and perform various tests for each kernel in both YARN client
and YARN cluster mode.

make itest

Build the docker images

The following can be used to build all three docker images used within the project. See
docker images for specific details.

make docker-images

Docker Images

The project produces three docker images to make both testing and general usage easier:

	elyra/yarn-spark

	elyra/enterprise-gateway

	elyra/nb2kg

All images can be pulled from docker hub’s elyra organization [https://hub.docker.com/u/elyra/] and their
docker files can be found in the github repository in the appropriate directory of
etc/docker [https://github.com/jupyter-incubator/enterprise_gateway/tree/master/etc/docker].

Local images can also be built via make docker-images.

elyra/yarn-spark

The elyra/yarn-spark [https://hub.docker.com/r/elyra/yarn-spark/] image is considered the base image
upon which elyra/enterprise-gateway [https://hub.docker.com/r/elyra/enterprise-gateway/] is built. It consist
of a Hadoop (YARN) installation that includes Spark, Java, Anaconda and various kernel installations.

The tag of this image reflects the version of Spark included in the image and we don’t anticipate the need to update this image regularly.

The primary use of this image is to quickly build elyra/enterprise-gateway images for testing and development
purposes. To build a local image, run make docker-image-yarn-spark. Note: the tag for this image will
still be :2.1.0 since elyra/enterprise-gateway depends on this image/tag.

As of the 0.9.0 release, this image can be used to start a separate YARN cluster that, when combined with another
instance of elyra/enterprise-gateway can better demonstrate remote kernel functionality.

elyra/enterprise-gateway

Image elyra/enterprise-gateway [https://hub.docker.com/r/elyra/enterprise-gateway/] is the primary image
produced by this repository. Built on elyra/yarn-spark [https://hub.docker.com/r/elyra/yarn-spark/], it
also includes the various example kernelspecs contained in the repository.

By default, this container will start with enterprise gateway running as a service user named elyra. This
user is enabled for sudo so that it can emulate other users where necessary. Other users included in this
image are jovyan (the user common in most Jupyter-based images, with UID=1000 and GID=100), bob and
alice (names commonly used in security-based examples).

We plan on producing one image per release to the
enterprise-gateway docker repo [https://hub.docker.com/r/elyra/enterprise-gateway/] where
the image’s tag reflects the corresponding release. Over time, we may integrate with docker hub to produce
this image on every build - where the commit hash becomes the tag.

To build a local image, run make docker-image-enterprise-gateway. Because this is a development build, the
the tag for this image will be :dev.

elyra/nb2kg

Image elyra/nb2kg [https://hub.docker.com/r/elyra/nb2kg/] is a simple image built
on jupyter/minimal-notebook [https://hub.docker.com/r/jupyter/minimal-notebook/] along with the latest
release of NB2KG [https://github.com/jupyter-incubator/nb2kg]. The image
also sets some of the new variables that pertain to enterprise gateway (e.g., KG_REQUEST_TIMEOUT,
KG_HTTP_USER, KERNEL_USERNAME, etc.).

To build a local image, run make docker-image-nb2kg. Because this is a development build, the
tag for this image will be :dev.

Project Roadmap

We have plenty to do, now and in the future. Here’s where we’re headed:

	Kernel Configuration Profile

	Enable client to request different resource configurations for kernels (e.g. small, medium, large)

	Profiles should be defined by Administrators and enabled for users and/or groups.

	Administration UI

	Dashboard with running kernels

	Lifecycle management

	Time running, stop/kill, Profile Management, etc

	Support for other resource managers

	Kubernetes

	Platform Conductor

	User Environments

	High Availability

	Batch REST API

We’d love to hear any other use cases you might have and look forward to your contributions to Jupyter Enterprise Gateway.

Index

 _images/debug_configuration.png
[JON] Run/Debug Configurations

+ |= @ H ¥ Name: enterprisegatewayapp Share Single instance only
> Python
\caigirsianll Loos
9~ Defaults
Script path: ¥ [Users/Iresende/opensource/jupyter/elyra/scripts/jupyter-enterprisegateway
Parameters: s/vl/cluster” ——EnterpriseGatewayApp.remote_hosts=['localhost']

v Environment
Project: @ elyra
Environment variables: EG_ENABLE_TUNNELING=False;PYTHONUNBUFFERED=1

Python interpreter: Project Default (Python 3.6.1 (~/opt/anaconda3/bin/python))

A
%

Interpreter options:
Working directory: /Users/Iresende/opensource/jupyter/elyra/scripts

Add content roots to PYTHONPATH
Add source roots to PYTHONPATH

Emulate terminal in output console

Show command line afterwards

v Before launch: Activate tool window

There are no tasks to run before launch

Show this page Activate tool window

? Cancel Apply

_images/process_proxy_hierarchy.png
BaseProcessProxy
(Abstract base)

RemoteProcessProxy

bitract tase) LocalProcessProxy

DistrbutedProcessProxy

YamClusterProcessProry | +++ | XYZProcessProxy

_images/yarnui.jpg
All Applications

nooe Conavors Memory Memoy Memny VCows Vooes Voo
(= Tt M feeews s ‘B e
) f 1e8 ises o8 f x o
Schacuing osouce Tpo Mok Asccaon
wewoRy, memory 12, vCores >
Furoing
o o FeTIe G o Fnastatin o
s a7 aa1s muse D A
P
Ed
eplcaon 150055221000.000 1o 5Ot Tuse D D NA N
= Proa
5
Ei
sppicaton 1S00SS2279000.0009 ool ZISHREBINMG. SPATK caln O TuSw TuSw FNGED SUCCEEDED NA NA
sz Tesas Trorus

2

nav.xhtml

 Table of Contents

 		
 Jupyter Enterprise Gateway

 		
 Getting started

 		
 Enterprise Gateway Features

 		
 Installing Enterprise Gateway

 		
 Installing Kernels

 		
 Configuring Spark Resource Managers

 		
 Starting Enterprise Gateway

 		
 Connecting a Notebook to Enterprise Gateway

 		
 Enabling Cluster Mode Support

 		
 Enabling Client Mode/Standalone Support

 		
 Advanced Features

 		
 Culling idle kernels

 		
 Installing Python modules from within notebook cell

 		
 Supported Kernels

 		
 Scala kernel (Apache Toree kernel)

 		
 Installing support for Python (IPython kernel)

 		
 Installing support for R (IRkernel)

 		
 Security Features

 		
 Authorization

 		
 Authorized Users

 		
 Unauthorized Users

 		
 Authorization Failures

 		
 User Impersonation

 		
 Impersonation in YARN Cluster Mode

 		
 Impersonation in Standalone or YARN Client Mode

 		
 SSH Tunneling

 		
 Securing Enterprise Gateway Server

 		
 Using SSL for encrypted communication

 		
 Using Enterprise Gateway configuration file

 		
 Use Cases

 		
 System Architecture

 		
 Enterprise Gateway Process Proxy Extensions

 		
 Overview

 		
 Remote Kernel Spec

 		
 Remote Mapping Kernel Manager

 		
 Remote Kernel Manager

 		
 Process Proxy

 		
 RemoteProcessProxy

 		
 Process Proxy Configuration

 		
 Launchers

 		
 Extending Enterprise Gateway

 		
 Configuration options

 		
 Addtional supported environment variables

 		
 Per-kernel Configuration Overrides

 		
 Troubleshooting

 		
 Debugging Jupyter Enterprise Gateway

 		
 Configuring your IDE for debugging Jupyter Enterprise Gateway

 		
 Creating a new Debug Configuration

 		
 Running in debug mode

 		
 Contributing to Jupyter Enterprise Gateway

 		
 Development Workflow

 		
 Prerequisites

 		
 Clone the repo

 		
 Make

 		
 Build a conda environment

 		
 Build the wheel file

 		
 Build the kernelspec tar file

 		
 Run the Enterprise Gateway server

 		
 Build the docs

 		
 Run the unit tests

 		
 Run the integration tests

 		
 Build the docker images

 		
 Docker Images

 		
 elyra/yarn-spark

 		
 elyra/enterprise-gateway

 		
 elyra/nb2kg

 		
 Project Roadmap

_static/minus.png

_static/file.png

_static/plus.png

