
Enterprise Gateway Documentation
Release 2.0.0

Project Jupyter team

Sep 04, 2019

USER DOCUMENTATION

1 Getting started 3
1.1 Enterprise Gateway Features . 3
1.2 Installing Enterprise Gateway . 4
1.3 Installing Kernels . 4
1.4 Starting Enterprise Gateway . 6
1.5 Connecting a Notebook to Enterprise Gateway . 6

2 System Architecture 9
2.1 Enterprise Gateway Process Proxy Extensions . 9
2.2 Remote Mapping Kernel Manager . 10
2.3 Remote Kernel Manager . 11
2.4 Process Proxy . 11
2.5 Kernel Launchers . 16
2.6 Extending Enterprise Gateway . 18

3 Security Features 19
3.1 Authorization . 19
3.2 User Impersonation . 20
3.3 SSH Tunneling . 21
3.4 Securing Enterprise Gateway Server . 21

4 Ancillary Features 23
4.1 Culling idle kernels . 23
4.2 Installing Python modules from within notebook cell . 24

5 Use Cases 25

6 Local Mode 27

7 Distributed Mode 29

8 YARN Cluster Mode 31
8.1 Configuring Kernels for YARN Cluster mode . 31
8.2 Scala Kernel (Apache Toree kernel) . 32
8.3 Installing support for Python (IPython kernel) . 33
8.4 Installing support for R (IRkernel) . 33

9 YARN Client Mode 35
9.1 Scala Kernel (Apache Toree kernel) . 36
9.2 Installing support for Python (IPython kernel) . 37
9.3 Installing support for R (IRkernel) . 37

i

10 Spark Standalone 39
10.1 Configuring Kernels for Spark Standalone . 39
10.2 Scala Kernel (Apache Toree kernel) . 40
10.3 Installing support for Python (IPython kernel) . 41
10.4 Installing support for R (IRkernel) . 41

11 Kubernetes 43
11.1 Enterprise Gateway Deployment . 43
11.2 Kubernetes Kernel Instances . 50
11.3 KubernetesProcessProxy . 52
11.4 Deploying Enterprise Gateway on Kubernetes . 53
11.5 Setting up a Kubernetes Ingress for use with Enterprise Gateway . 55
11.6 Kubernetes Tips . 57

12 Docker Swarm 59
12.1 Enterprise Gateway Deployment . 59
12.2 Docker Swarm Kernel Instances . 60
12.3 DockerSwarmProcessProxy . 60
12.4 DockerProcessProxy . 61

13 IBM Spectrum Conductor 63

14 Configuration options 65
14.1 Addtional supported environment variables . 70
14.2 Per-kernel Configuration Overrides . 73
14.3 Per-kernel Environment Overrides . 73

15 Troubleshooting 77

16 Debugging Jupyter Enterprise Gateway 83
16.1 Configuring your IDE for debugging Jupyter Enterprise Gateway 83

17 Contributing to Jupyter Enterprise Gateway 85

18 Development Workflow 87
18.1 Prerequisites . 87
18.2 Clone the repo . 87
18.3 Make . 87
18.4 Build a conda environment . 88
18.5 Build the wheel file . 88
18.6 Build the kernelspec tar file . 88
18.7 Build distribution files . 89
18.8 Run the Enterprise Gateway server . 89
18.9 Build the docs . 89
18.10 Run the unit tests . 89
18.11 Run the integration tests . 89
18.12 Build the docker images . 89

19 Docker Images 91
19.1 elyra/demo-base . 91
19.2 elyra/enterprise-gateway-demo . 91
19.3 elyra/nb2kg . 92

20 Runtime Images 93
20.1 elyra/enterprise-gateway . 93
20.2 elyra/kernel-py . 93

ii

20.3 elyra/kernel-spark-py . 93
20.4 elyra/kernel-tf-py . 93
20.5 elyra/kernel-scala . 93
20.6 elyra/kernel-r . 94
20.7 elyra/kernel-spark-r . 94

21 Custom Kernel Images 95
21.1 Extending Existing Kernel Images . 95
21.2 Bringing Your Own Kernel Image . 95
21.3 Deploying Your Custom Kernel Image . 98

22 Project Roadmap 101

iii

iv

Enterprise Gateway Documentation, Release 2.0.0

Jupyter Enterprise Gateway is a web server (built directly on Jupyter Kernel Gateway) that enables the ability to
launch kernels on behalf of remote notebooks throughout your enterprise compute cluster. This enables better resource
management since the web server is no longer the single location for kernel activity which, in Big Data environments,
can result in large processes that together deplete your single node of its resources.

By default, Jupyter runs kernels locally - potentially exhausting the server of resources

By leveraging the functionality of the underlying resource management applications like Hadoop YARN, Kubernetes,
etc., Jupyter Enterprise Gateway distributes kernels across the compute cluster, dramatically increasing the number of
simultaneously active kernels.

Jupyter Enterprise Gateway leverages local resource managers to distribute kernels

USER DOCUMENTATION 1

https://github.com/jupyter/enterprise_gateway
http://jupyter-kernel-gateway.readthedocs.io/en/latest/

Enterprise Gateway Documentation, Release 2.0.0

2 USER DOCUMENTATION

CHAPTER

ONE

GETTING STARTED

Jupyter Enterprise Gateway requires Python (Python 3.3 or greater, or Python 2.7) and is intended to be installed on
a node (typically the master node) of a managed cluster. Although its design center is for running kernels in Apache
Spark 2.x clusters, clusters configured without Apache Spark are also acceptable.

The following Resource Managers are supported with the Jupyter Enterprise Gateway:

• Spark Standalone

• YARN Resource Manager - Client Mode

• YARN Resource Manager - Cluster Mode

• IBM Spectrum Conductor - Cluster Mode

• Kubernetes

• Docker Swarm

If you don’t rely on a Resource Manager, you can use the Distributed mode which will connect a set of hosts via SSH.

The following kernels have been tested with the Jupyter Enterprise Gateway:

• Python/Apache Spark 2.x with IPython kernel

• Scala 2.11/Apache Spark 2.x with Apache Toree kernel

• R/Apache Spark 2.x with IRkernel

To support Scala kernels, Apache Toree is used. To support IPython kernels and R kernels, various packages have
to be installed on each of the resource manager nodes. The simplest way to enable all the data nodes with required
dependencies is to install Anaconda on all cluster nodes.

To take full advantage of security and user impersonation capabilities, a Kerberized cluster is recommended.

1.1 Enterprise Gateway Features

Jupyter Enterprise Gateway exposes the following features and functionality:

• Enables the ability to launch kernels on different servers thereby distributing resource utilization across the
enterprise

• Pluggable framework allows for support of additional resource managers

• Secure communication from client to kernel

• Persistent kernel sessions (see Roadmap)

• Configuration profiles (see Roadmap)

3

http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
https://toree.apache.org/
https://anaconda.com/
roadmap.html#project-roadmap
roadmap.html#project-roadmap

Enterprise Gateway Documentation, Release 2.0.0

• Feature parity with Jupyter Kernel Gateway

• A CLI for launching the enterprise gateway server: jupyter enterprisegateway OPTIONS

• A Python 2.7 and 3.3+ compatible implementation

1.2 Installing Enterprise Gateway

For new users, we highly recommend installing Anaconda. Anaconda conveniently installs Python, the Jupyter
Notebook, the IPython kernel and other commonly used packages for scientific computing and data science.

Use the following installation steps:

• Download Anaconda. We recommend downloading Anaconda’s latest Python version (currently Python 2.7 and
Python 3.6).

• Install the version of Anaconda which you downloaded, following the instructions on the download page.

• Install the latest version of Jupyter Enterprise Gateway from PyPI or conda forge along with its dependencies.

install using pip from pypi
pip install --upgrade jupyter_enterprise_gateway

install using conda from conda forge
conda install -c conda-forge jupyter_enterprise_gateway

At this point, the Jupyter Enterprise Gateway deployment provides local kernel support which is fully compatible with
Jupyter Kernel Gateway.

To uninstall Jupyter Enterprise Gateway. . .

#uninstall using pip
pip uninstall jupyter_enterprise_gateway

#uninstall using conda
conda uninstall jupyter_enterprise_gateway

1.3 Installing Kernels

To leverage the full distributed capabilities of Spark, Jupyter Enterprise Gateway has provided deep integration with
various resource managers. Having said that, Enterprise Gateway also supports running in a pseudo-distributed mode
utilizing for example both YARN client or Spark Standalone modes. We’ve also recently added Kubernetes, Docker
Swarm and IBM Spectrum Conductor integrations.

Please follow the links below to learn specific details about how to enable/configure the different modes of depoloying
your kernels:

• Distributed

• YARN Cluster Mode

• YARN Client Mode

• Standalone

• Kubernetes

• Docker Swarm

4 Chapter 1. Getting started

http://jupyter-kernel-gateway.readthedocs.io/en/latest/
http://www.anaconda.com/download
http://jupyter.readthedocs.io/en/latest/install.html
http://jupyter.readthedocs.io/en/latest/install.html
http://ipython.readthedocs.io/en/stable/install/kernel_install.html
http://www.anaconda.com/download
https://pypi.python.org/pypi/jupyter_enterprise_gateway/
https://conda-forge.org/
kernel-distributed.html
kernel-yarn-cluster-mode.html
kernel-yarn-client-mode.html
kernel-spark-standalone.html
kernel-kubernetes.html
kernel-docker.html

Enterprise Gateway Documentation, Release 2.0.0

• IBM Spectrum Conducto

In each of the resource manager sections, we set the KERNELS_FOLDER to /usr/local/share/jupyter/
kernels since that’s one of the default locations searched by the Jupyter framework. Co-locating kernelspecs hier-
archies in the same parent folder is recommended, although not required.

Depending on the resource manager, we detail in the related section the implemented kernel languages (python, scala,
R. . .). The following kernels have been tested with the Jupyter Enterprise Gateway:

• Python/Apache Spark 2.x with IPython kernel

• Scala 2.11/Apache Spark 2.x with Apache Toree kernel

• R/Apache Spark 2.x with IRkernel

1.3.1 Important Requirements regarding the Nodes

We have three cases:

Case 1 - The kernel is run in via a container-based process proxy (Kubernetes, Docker or DockerSwarm)

In that case, the image should ensure the availability of the kernel libraries and kernelspec. The kernelspec is not
necessary here, only the launcher. We talk about this in container customization.

The launch of containerized kernels via Enterprise Gateway is two-fold.

1. First, there’s the argv section in the kernelspec that is processed by the server. In these cases, the command
that is invoked is a python script using the target container’s api (kubernetes, docker, or docker swarm) that is
responsible for converting any necessary “parameters” to environment variables, etc. that are used during the
actual container creation.

2. The command that is run in the container is the actual kernel launcher script. This launcher is responsible for
taking the response address (which is now an env variable) and returning the kernel’s connection information
back on that response address to Enterprise Gateway. The kernel launcher does additional things - but primarily
listens for interrupt and shutdown requests, which it then passes along to the actual (embedded) kernel.

So container environments have two launches - one to launch the container itself, the other to launch the kernel (within
the container).

Case 2 - The kernel is run via DistributedProcessProxy

The kernelspecs are required on all nodes if using the DistributedProcessProxy - which apply to YARN Client mode,
Standalone, and Distributed modes. All kernels (libraries. . .) and their corresponding kernelspecs must reside on each
node.

The kernelspec hierarchies (i.e., paths) must be available and identical on all nodes.

IPython and IRkernel kernels must be installed on each node.

SSH passwordless is needed between the EG node and the other nodes.

Case 3 - The kernel is run via YarnClusterProcessProxy or ConductorClusterProcessProxy

With cluster process proxies, distribution of kernelspecs to all nodes besides the EG node is not required.

However, the IPython and IRkernel kernels must be installed on each node.

Note that because the Apache Toree kernel, and its supporting libraries, will be transferred to the target node via
spark-submit, installation of Apache Toree (the scala kernel) is not required except on the Enterprise Gateway node
itself.

1.3. Installing Kernels 5

kernel-conductor.html
./docker.html#bringing-your-own-kernel-image

Enterprise Gateway Documentation, Release 2.0.0

1.3.2 Sample kernelspecs

We provide sample kernel configuration and launcher tar files as part of each release (e.g.
jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz) that can be extracted and modified to fit your configura-
tion.

For information about how to build your own kernel-based docker image for use by Enterprise Gateway see Custom
kernel images.

1.4 Starting Enterprise Gateway

Very few arguments are necessary to minimally start Enterprise Gateway. The following command could be considered
a minimal command and essentially provides functionality equal to Jupyter Kernel Gateway:

jupyter enterprisegateway --ip=0.0.0.0 --port_retries=0

where --ip=0.0.0.0 exposes Enterprise Gateway on the public network and --port_retries=0 ensures that
a single instance will be started.

Please note that the ability to target resource-managed clusters (and use remote kernels) will require additional con-
figuration settings depending on the resource manager. For additional information see the appropriate “Enabling . . .
Support” section listed above.

We recommend starting Enterprise Gateway as a background task. As a result, you might find it best to create a start
script to maintain options, file redirection, etc.

The following script starts Enterprise Gateway with DEBUG tracing enabled (default is INFO) and idle kernel culling
for any kernels idle for 12 hours where idle check intervals occur every minute. The Enterprise Gateway log
can then be monitored via tail -F enterprise_gateway.log and it can be stopped via kill $(cat
enterprise_gateway.pid)

#!/bin/bash

LOG=/var/log/enterprise_gateway.log
PIDFILE=/var/run/enterprise_gateway.pid

jupyter enterprisegateway --ip=0.0.0.0 --port_retries=0 --log-level=DEBUG > $LOG 2>&1
→˓&
if ["$?" -eq 0]; then

echo $! > $PIDFILE
else

exit 1
fi

1.5 Connecting a Notebook to Enterprise Gateway

To leverage the benefits of Enterprise Gateway, it’s helpful to redirect a Notebook server’s kernel management to the
Gateway server. This allows better separation of the user’s notebooks from the managed computer cluster (Kubernetes,
Hadoop YARN, Docker Swarm, etc.) on which Enterprise Gateway resides. A Notebook server can be configured
to relay kernel requests to an Enterprise Gateway server in two ways - depending on the version of Notebook you’re
using.

6 Chapter 1. Getting started

https://github.com/jupyter/enterprise_gateway/releases
https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz
docker.html#custom-kernel-images
docker.html#custom-kernel-images

Enterprise Gateway Documentation, Release 2.0.0

1.5.1 Notebook 6.0 (and above)

With the Notebook 6.0 release, the NB2KG server extension (see next section) is built directly into the Notebook
server. As a result, the steps for installing and configuring the server extension are no longer necessary.

To start the notebook server from the command line, the following will redirect kernel management request to the
Gateway server running at <ENTERPRISE_GATEWAY_HOST_IP>:

jupyter notebook --gateway-url=http://<ENTERPRISE_GATEWAY_HOST_IP>:8888 --
→˓GatewayClient.http_user=guest --GatewayClient.http_pwd=guest-password

If you have Notebook already in a docker image, a corresponding docker invocation would look something like this:

docker run -t --rm \
-e JUPYTER_GATEWAY_URL='http://<master ip>:8888' \
-e JUPYTER_GATEWAY_HTTP_USER=guest \
-e JUPYTER_GATEWAY_HTTP_PWD=guest-password \
-e JUPYTER_GATEWAY_VALIDATE_CERT='false' \
-e LOG_LEVEL=DEBUG \
-p 8888:8888 \
-v ${HOME}/notebooks/:/tmp/notebooks \
-w /tmp/notebooks \
notebook-docker-image

Notebook files residing in ${HOME}/notebooks can then be accessed via http://localhost:8888.

1.5.2 NB2KG Server Extension

For Notebook versions prior to 6.0, the NB2KG server extension is used to connect a Notebook from a local desktop
or laptop to the Enterprise Gateway instance. Please refer to the NB2KG repository’s README file for installation
instructions.

Extending the notebook launch command listed on the NB2KG repo, one might use the following. . .

export KG_URL=http://<ENTERPRISE_GATEWAY_HOST_IP>:8888
export KG_HTTP_USER=guest
export KG_HTTP_PASS=guest-password
export KERNEL_USERNAME=${KG_HTTP_USER}
jupyter notebook \

--NotebookApp.session_manager_class=nb2kg.managers.SessionManager \
--NotebookApp.kernel_manager_class=nb2kg.managers.RemoteKernelManager \
--NotebookApp.kernel_spec_manager_class=nb2kg.managers.RemoteKernelSpecManager

For your convenience, we have also built a docker image (elyra/nb2kg) with Jupyter Notebook, Jupyter Lab and
NB2KG which can be launched by the command below:

docker run -t --rm \
-e KG_URL='http://<master ip>:8888' \
-e KG_HTTP_USER=guest \
-e KG_HTTP_PASS=guest-password \
-e VALIDATE_KG_CERT='false' \
-e LOG_LEVEL=DEBUG \
-p 8888:8888 \
-v ${HOME}/notebooks/:/tmp/notebooks \
-w /tmp/notebooks \
elyra/nb2kg

1.5. Connecting a Notebook to Enterprise Gateway 7

https://github.com/jupyter/nb2kg
https://github.com/jupyter/nb2kg#install
https://github.com/jupyter/nb2kg#install
https://github.com/jupyter/nb2kg#run-notebook-server
docker.html#elyra-nb2kg

Enterprise Gateway Documentation, Release 2.0.0

Notebook files residing in ${HOME}/notebooks can then be accessed via http://localhost:8888.

To invoke Jupyter Lab, simply add lab to the endpoint: http://localhost:8888/lab

8 Chapter 1. Getting started

CHAPTER

TWO

SYSTEM ARCHITECTURE

Below are sections presenting details of the Enterprise Gateway internals and other related items. While we will
attempt to maintain its consistency, the ultimate answers are in the code itself.

2.1 Enterprise Gateway Process Proxy Extensions

Enterprise Gateway is follow-on project to Jupyter Kernel Gateway with additional abilities to support remote ker-
nel sessions on behalf of multiple users within resource managed frameworks such as Apache Hadoop YARN
or Kubernetes. Enterprise Gateway introduces these capabilities by extending the existing class hierarchies for
KernelManager and MultiKernelManager classes, along with an additional abstraction known as a process
proxy.

2.1.1 Overview

At its basic level, a running kernel consists of two components for its communication - a set of ports and a process.

Kernel Ports

The first component is a set of five zero-MQ ports used to convey the Jupyter protocol between the Notebook and the
underlying kernel. In addition to the 5 ports, is an IP address, a key, and a signature scheme indicator used to interpret
the key. These eight pieces of information are conveyed to the kernel via a json file, known as the connection file.

In today’s JKG implementation, the IP address must be a local IP address meaning that the kernel cannot be remote
from the kernel gateway. The enforcement of this restriction is down in the jupyter_client module - two levels below
JKG.

This component is the core communication mechanism between the Notebook and the kernel. All aspects, including
life-cycle management, can occur via this component. The kernel process (below) comes into play only when port-
based communication becomes unreliable or additional information is required.

Kernel Process

When a kernel is launched, one of the fields of the kernel’s associated kernel specification is used to identify a com-
mand to invoke. In today’s implementation, this command information, along with other environment variables (also
described in the kernel specification), is passed to popen() which returns a process class. This class supports four
basic methods following its creation:

1. poll() to determine if the process is still running

2. wait() to block the caller until the process has terminated

9

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://kubernetes.io/

Enterprise Gateway Documentation, Release 2.0.0

3. send_signal(signum) to send a signal to the process

4. kill() to terminate the process

As you can see, other forms of process communication can be achieved by abstracting the launch mechanism.

2.1.2 Remote Kernel Spec

The primary vehicle for indicating a given kernel should be handled in a different manner is the kernel specifi-
cation, otherwise known as the kernel spec. Enterprise Gateway introduces a new subclass of KernelSpec named
RemoteKernelSpec.

The RemoteKernelSpec class provides support for a new (and optional) stanza within the kernelspec file. This
stanza is located in the metadata stanza and is named process_proxy. This stanza identifies the class that
provides the kernel’s process abstraction (while allowing for future extensions).

Here’s an example of a kernel specification that uses the DistributedProcessProxy class for its abstraction:

{
"language": "scala",
"display_name": "Spark - Scala (YARN Client Mode)",
"metadata": {
"process_proxy": {
"class_name": "enterprise_gateway.services.processproxies.distributed.

→˓DistributedProcessProxy"
}

},
"env": {
"SPARK_HOME": "/usr/hdp/current/spark2-client",
"__TOREE_SPARK_OPTS__": "--master yarn --deploy-mode client --name ${KERNEL_ID:-

→˓ERROR__NO__KERNEL_ID}",
"__TOREE_OPTS__": "",
"LAUNCH_OPTS": "",
"DEFAULT_INTERPRETER": "Scala"

},
"argv": [
"/usr/local/share/jupyter/kernels/spark_scala_yarn_client/bin/run.sh",
"--RemoteProcessProxy.kernel-id",
"{kernel_id}",
"--RemoteProcessProxy.response-address",
"{response_address}"

]
}

The RemoteKernelSpec class definition can be found in remotekernelspec.py

See the Process Proxy section for more details.

2.2 Remote Mapping Kernel Manager

RemoteMappingKernelManager is a subclass of JKG’s existing SeedingMappingKernelManager and
provides two functions.

1. It provides the vehicle for making the RemoteKernelManager class known and available.

10 Chapter 2. System Architecture

https://github.com/jupyter/enterprise_gateway/blob/master/enterprise_gateway/services/kernelspecs/remotekernelspec.py

Enterprise Gateway Documentation, Release 2.0.0

2. It overrides start_kernel to look at the target kernel’s kernel spec to see if it contains a remote process
proxy class entry. If so, it records the name of the class in its member variable to be made avaiable to the kernel
start logic.

2.3 Remote Kernel Manager

RemoteKernelManager is a subclass of JKG’s existing KernelGatewayIOLoopKernelManager class and
provides the primary integration points for remote process proxy invocations. It implements a number of methods
which allow Enterprise Gateway to circumvent functionality that might otherwise be prevented. As a result, some of
these overrides may not be necessary if lower layers of the Jupyter framework were modified. For example, some
methods are required because Jupyter makes assumptions that the kernel process is local.

Its primary functionality, however, is to override the _launch_kernel method (which is the method closest to the
process invocation) and instantiates the appropriate process proxy instance - which is then returned in place of the
process instance used in today’s implementation. Any interaction with the process then takes place via the process
proxy.

Both RemoteMappingKernelManager and RemoteKernelManager class definitions can be found in re-
motemanager.py

2.4 Process Proxy

Process proxy classes derive from the abstract base class BaseProcessProxyABC - which defines the four basic
process methods. There are two immediate subclasses of BaseProcessProxyABC - LocalProcessProxy and
RemoteProcessProxy.

LocalProcessProxy is essentially a pass-through to the current implementation. KernelSpecs that do not contain
a process_proxy stanza will use LocalProcessProxy.

RemoteProcessProxy is an abstract base class representing remote kernel processes. Currently, there are four
built-in subclasses of RemoteProcessProxy . . .

• DistributedProcessProxy - largely a proof of concept class, DistributedProcessProxy is re-
sponsible for the launch and management of kernels distributed across and explicitly defined set of hosts using
ssh. Hosts are determined via a round-robin algorithm (that we should make pluggable someday).

• YarnClusterProcessProxy - is responsible for the discovery and management of kernels hosted as yarn
applications within a YARN-managed cluster.

• KubernetesProcessProxy - is responsible for the discovery and management of kernels hosted within a
Kubernetes cluster.

• DockerSwarmProcessProxy - is responsible for the discovery and management of kernels hosted within
a Docker Swarm cluster.

• DockerProcessProxy - is responsible for the discovery and management of kernels hosted within Docker
configuration. Note: because these kernels will always run local to the corresponding Enterprise Gateway
instance, these process proxies are of limited use.

• ConductorClusterProcessProxy - is responsible for the discovery and management of kernels hosted
within an IBM Spectrum Conductor cluster.

You might notice that the last five process proxies do not necessarily control the launch of the kernel. This is because
the native jupyter framework is utilized such that the script that is invoked by the framework is what launches the kernel
against that particular resource manager. As a result, the startup time actions of these process proxies is more about
discovering where the kernel landed within the cluster in order to establish a mechanism for determining lifetime.

2.3. Remote Kernel Manager 11

https://github.com/jupyter/enterprise_gateway/blob/master/enterprise_gateway/services/kernels/remotemanager.py
https://github.com/jupyter/enterprise_gateway/blob/master/enterprise_gateway/services/kernels/remotemanager.py

Enterprise Gateway Documentation, Release 2.0.0

Discovery typically consists of using the resource manager’s API to locate the kernel who’s name includes its kernel
ID in some fashion.

On the other hand, the DistributedProcessProxy essentially wraps the kernelspec argument vector (i.e., in-
vocation string) in a remote shell since the host is determined by Enterprise Gateway, eliminating the discovery step
from its implementation.

These class definitions can be found in the processproxies package. However, Enterprise Gateway is architected such
that additonal process proxy implementations can be provided and are not required to be located within the Enterprise
Gateway hierarchy - i.e., we embrace a bring your own process proxy model.

The process proxy constructor looks as follows:

def __init__(self, kernel_manager, proxy_config):

where

• kernel_manager is an instance of a RemoteKernelManager class that is associated with the corre-
sponding RemoteKernelSpec instance.

• proxy_config is a dictionary of configuration values present in the kernel spec’s json file. These values
can be used to override or amend various global configuration values on a per-kernel basis. See Process Proxy
Configuration for more information.

@abstractmethod
def launch_process(self, kernel_cmd, *kw):

where

• kernel_cmd is a list (argument vector) that should be invoked to launch the kernel. This parameter is an
artifact of the kernel manager _launch_kernel() method.

• **kw is a set key-word arguments which includes an env dictionary element consisting of the names and values
of which environment variables to set at launch time.

12 Chapter 2. System Architecture

https://github.com/jupyter/enterprise_gateway/blob/master/enterprise_gateway/services/processproxies

Enterprise Gateway Documentation, Release 2.0.0

The launch_process() method is the primary method exposed on the Process Proxy classes. It’s responsible for
performing the appropriate actions relative to the target type. The process must be in a running state prior to returning
from this method - otherwise attempts to use the connections will not be successful since the (remote) kernel needs to
have created the sockets.

All process proxy subclasses should ensure BaseProcessProxyABC.launch_process() is called - which
will automatically place a variable named KERNEL_ID (consisting of the kernel’s unique ID) into the corresponding
kernel’s environment variable list since KERNEL_ID is a primary mechanism for associating remote applications to a
specific kernel instance.

def poll(self):

The poll() method is used by the Jupyter framework to determine if the process is still alive. By default, the
framework’s heartbeat mechanism calls poll() every 3 seconds. This method returns None if the process is still
running, False otherwise (per the popen() contract).

def wait(self):

The wait() method is used by the Jupyter framework when terminating a kernel. Its purpose is to block return to the
caller until the process has terminated. Since this could be a while, its best to return control in a reasonable amount of
time since the kernel instance is destroyed anyway. This method does not return a value.

def send_signal(self, signum):

The send_signal() method is used by the Jupyter framework to send a signal to the process. Currently, SIGINT
(2) (to interrupt the kernel) is the signal sent.

It should be noted that for normal processes - both local and remote - poll() and kill() functionality can be
implemented via send_signal with signum values of 0 and 9, respectively.

This method returns None if the process is still running, False otherwise.

def kill(self):

The kill() method is used by the Jupyter framework to terminate the kernel process. This method is only necessary
when the request to shutdown the kernel - sent via the control port of the zero-MQ ports - does not respond in an
appropriate amount of time.

This method returns None if the process is killed successfully, False otherwise.

2.4.1 RemoteProcessProxy

As noted above, RemoteProcessProxy is an abstract base class that derives from BaseProcessProxyABC.
Subclasses of RemoteProcessProxy must implement two methods - confirm_remote_startup() and
handle_timeout():

@abstractmethod
def confirm_remote_startup(self, kernel_cmd, **kw):

where

• kernel_cmd is a list (argument vector) that should be invoked to launch the kernel. This parameter is an
artifact of the kernel manager _launch_kernel() method.

• **kw is a set key-word arguments.

confirm_remote_startup() is responsible for detecting that the remote kernel has been appropriately launched
and is ready to receive requests. This can include gather application status from the remote resource manager but

2.4. Process Proxy 13

Enterprise Gateway Documentation, Release 2.0.0

is really a function of having received the connection information from the remote kernel launcher. (See Kernel
Launchers)

@abstractmethod
def handle_timeout(self):

handle_timeout() is responsible for detecting that the remote kernel has failed to startup in an acceptable time.
It should be called from confirm_remote_startup(). If the timeout expires, handle_timeout() should
throw HTTP Error 500 (Internal Server Error).

Kernel launch timeout expiration is expressed via the environment variable KERNEL_LAUNCH_TIMEOUT.
If this value does not exist, it defaults to the Enterprise Gateway process environment variable
EG_KERNEL_LAUNCH_TIMEOUT - which defaults to 30 seconds if unspecified. Since all KERNEL_ envi-
ronment variables “flow” from NB2KG, the launch timeout can be specified as a client attribute of the Notebook
session.

YarnClusterProcessProxy

As part of its base offering, Enterprise Gateway provides an implementation of a process proxy that communicates
with the YARN resource manager that has been instructed to launch a kernel on one of its worker nodes. The node
on which the kernel is launched is up to the resource manager - which enables an optimized distribution of kernel
resources.

Derived from RemoteProcessProxy, YarnClusterProcessProxy uses the yarn-api-client library
to locate the kernel and monitor its life-cycle. However, once the kernel has returned its connection information, the
primary kernel operations naturally take place over the ZeroMQ ports.

This process proxy is reliant on the --EnterpriseGatewayApp.yarn_endpoint command line option or the
EG_YARN_ENDPOINT environment variable to determine where the YARN resource manager is located. To accom-
modate increased flexibility, the endpoint definition can be defined within the process proxy stanza of the kernelspec,
enabling the ability to direct specific kernels to different YARN clusters.

In cases where the YARN cluster is configured for high availability, then the --EnterpriseGatewayApp.
alt_yarn_endpoint command line option or the EG_ALT_YARN_ENDPOINT environment variable should also
be defined. When set, the underlying yarn-api-client library will choose the active Resource Manager between
the two.

In cases where the YARN cluster is configured for high availability, then the --EnterpriseGatewayApp.
alt_yarn_endpoint command line option or the EG_ALT_YARN_ENDPOINT environment variable should also
be defined. When set, the underlying yarn-api-client library will choose the active Resource Manager between
the two.

Note: If Enterprise Gateway is running on an edge node of the YARN cluster and has a valid yarn-site.
xml file in HADOOP_CONF_DIR, neither of these values are required (default = None). In such cases, the
yarn-api-client library will choose the active Resource Manager from the configuration files.

See Enabling YARN Cluster Mode Support for details.

DistributedProcessProxy

Like YarnClusterProcessProxy, Enterprise Gateway also provides an implementation of a basic round-
robin remoting mechanism that is part of the DistributedProcessProxy class. This class uses the
--EnterpriseGatewayApp.remote_hosts command line option (or EG_REMOTE_HOSTS environment
variable) to determine on which hosts a given kernel should be launched. It uses a basic round-robin algorithm to
index into the list of remote hosts for selecting the target host. It then uses ssh to launch the kernel on the target host.

14 Chapter 2. System Architecture

kernel-yarn-cluster-mode.html#enabling-yarn-cluster-mode-support

Enterprise Gateway Documentation, Release 2.0.0

As a result, all kernelspec files must reside on the remote hosts in the same directory structure as on the Enterprise
Gateway server.

It should be noted that kernels launched with this process proxy run in YARN client mode - so their resources (within
the kernel process itself) are not managed by the YARN resource manager.

Like the yarn endpoint parameter the remote_hosts parameter can be specified within the process proxy configu-
ration to override the global value - enabling finer-grained kernel distributions.

See Enabling YARN Client Mode or Spark Standalone Support for details.

KubernetesProcessProxy

With the popularity of Kubernetes within the enterprise, Enterprise Gateway now provides an implementation of a
process proxy that communicates with the Kubernetes resource manager via the Kubernetes API. Unlike the other
offerings, in the case of Kubernetes, Enterprise Gateway is itself deployed within the Kubernetes cluster as a Service
and Deployment. The primary vehicle by which this is accomplished is via the enterprise-gateway.yaml file that
contains the necessary metadata to define its deployment.

See Enabling Kubernetes Support for details.

DockerSwarmProcessProxy

Enterprise Gateway provides an implementation of a process proxy that communicates with the Docker Swarm re-
source manager via the Docker API. When used, the kernels are launched as swarm services and can reside anywhere
in the managed cluster. To leverage kernels configured in this manner, Enterprise Gateway can be deployed either as a
Docker Swarm service or a traditional Docker container.

A similar DockerProcessProxy implementation has also been provided. When used, the corresponding kernel
will be launched as a traditional docker container that runs local to the launching Enterprise Gateway instance. As a
result, its use has limited value.

See Enabling Docker Swarm Support for details.

ConductorClusterProcessProxy

Enterprise Gateway also provides an implementation of a process proxy that communicates with an IBM Spectrum
Conductor resource manager that has been instructed to launch a kernel on one of its worker nodes. The node on which
the kernel is launched is up to the resource manager - which enables an optimized distribution of kernel resources.

Derived from RemoteProcessProxy, ConductorClusterProcessProxy uses Conductor’s REST-ful API
to locate the kernel and monitor its life-cycle. However, once the kernel has returned its connection information, the
primary kernel operations naturally take place over the ZeroMQ ports.

This process proxy is reliant on the --EnterpriseGatewayApp.conductor_endpoint command line op-
tion or the EG_CONDUCTOR_ENDPOINT environment variable to determine where the Conductor resource manager
is located.

See Enabling IBM Spectrum Conductor Support for details.

2.4.2 Process Proxy Configuration

Each kernel.json’s process-proxy stanza can specify an optional config stanza that is converted into a dictionary
of name/value pairs and passed as an argument to the each process-proxy constructor relative to the class identified by
the class_name entry.

2.4. Process Proxy 15

kernel-yarn-client-mode.html#enabling-yarn-client-mode-or-spark-standalone-support
https://github.com/jupyter/enterprise_gateway/blob/master/etc/kubernetes/enterprise-gateway.yaml
kernel-kubernetes.html#enabling-kubernetes-support
kernel-docker.html#enabling-docker-swarm-support
kernel-conductor.html#enabling-ibm-spectrum-conductor-support

Enterprise Gateway Documentation, Release 2.0.0

How each dictionary entry is interpreted is completely a function of the constructor relative to that process-proxy class
or its super-class. For example, an alternate list of remote hosts has meaning to the DistributedProcessProxy
but not to its super-classes. As a result, the super-class constructors will not attempt to interpret that value.

In addition, certain dictionary entries can override or amend system-level configuration values set on the command-
line, thereby allowing administrators to tune behaviors down to the kernel level. For example, an administrator might
want to constrain python kernels configured to use specific resources to an entirely different set of hosts (and ports)
that other remote kernels might be targeting in order to isolate valuable resources. Similarly, an administrator might
want to only authorize specific users to a given kernel.

In such situations, one might find the following process-proxy stanza:

{
"metadata": {
"process_proxy": {
"class_name": "enterprise_gateway.services.processproxies.distributed.

→˓DistributedProcessProxy",
"config": {

"remote_hosts": "priv_host1,priv_host2",
"port_range": "40000..41000",
"authorized_users": "bob,alice"

}
}

}
}

In this example, the kernel associated with this kernel.json file is relegated to hosts priv_host1 and priv_host2
where kernel ports will be restricted to a range between 40000 and 41000 and only users bob and alice can launch
such kernels (provided neither appear in the global set of unauthorized_users since denial takes precedence).

For a current enumeration of which system-level configuration values can be overridden or amended on a per-kernel
basis see Per-kernel Configuration Overrides.

2.5 Kernel Launchers

As noted above a kernel is considered started once the launch_process() method has conveyed its connection
information back to the Enterprise Gateway server process. Conveyance of connection information from a remote
kernel is the responsibility of the remote kernel launcher.

Kernel launchers provide a means of normalizing behaviors across kernels while avoiding kernel modifications. Be-
sides providing a location where connection file creation can occur, they also provide a ‘hook’ for other kinds of
behaviors - like establishing virtual environments or sandboxes, providing collaboration behavior, adhering to port
range restrictions, etc.

There are four primary tasks of a kernel launcher:

1. Creation of the connection file and ZMQ ports on the remote (target) system along with a gateway listener
socket

2. Conveyance of the connection (and listener socket) information back to the Enterprise Gateway process

3. Invocation of the target kernel

4. Listen for interrupt and shutdown requests from Enterprise Gateway and carry out the action when appropriate

Kernel launchers are minimally invoked with two parameters (both of which are conveyed by the argv stanza
of the corresponding kernel.json file) - the kernel’s ID as created by the server and conveyed via the placeholder
{kernel_id} and a response address consisting of the Enterprise Gateway server IP and port on which to return
the connection information similarly represented by the placeholder {response_address}.

16 Chapter 2. System Architecture

config-options.html#per-kernel-configuration-overrides

Enterprise Gateway Documentation, Release 2.0.0

The kernel’s id is identified by the parameter --RemoteProcessProxy.kernel-id. Its value
({kernel_id}) is essentially used to build a connection file to pass to the to-be-launched kernel, along with any
other things - like log files, etc.

The response address is identified by the parameter --RemoteProcessProxy.response-address. Its value
({response_address}) consists of a string of the form <IPV4:port> where the IPV4 address points back to
the Enterprise Gateway server - which is listening for a response on the provided port.

Here’s a kernel.json file illustrating these parameters. . .

{
"language": "python",
"display_name": "Spark - Python (YARN Cluster Mode)",
"metadata": {
"process_proxy": {
"class_name": "enterprise_gateway.services.processproxies.yarn.

→˓YarnClusterProcessProxy"
}

},
"env": {
"SPARK_HOME": "/usr/hdp/current/spark2-client",
"SPARK_OPTS": "--master yarn --deploy-mode cluster --name ${KERNEL_ID:-ERROR__NO__

→˓KERNEL_ID} --conf spark.yarn.submit.waitAppCompletion=false",
"LAUNCH_OPTS": ""

},
"argv": [
"/usr/local/share/jupyter/kernels/spark_python_yarn_cluster/bin/run.sh",
"--RemoteProcessProxy.kernel-id",
"{kernel_id}",
"--RemoteProcessProxy.response-address",
"{response_address}"

]
}

Other options supported by launchers include:

• --RemoteProcessProxy.port-range {port_range} - passes configured port-range to launcher
where launcher applies that range to kernel ports. The port-range may be configured globally or on a per-
kernelspec basis, as previously described.

• --RemoteProcessProxy.spark-context-initialization-mode [lazy|eager|none] -
indicates the timeframe in which the spark context will be created.

– lazy (default) attempts to defer initialization as late as possible - although can vary depending on the
underlying kernel and launcher implementation.

– eager attempts to create the spark context as soon as possible.

– none skips spark context creation altogether.

Note that some launchers may not be able to support all modes. For example, the scala launcher uses the
Toree kernel - which currently assumes a spark context will exist. As a result, a mode of none doesn’t apply.
Similarly, the lazy and eager modes in the Python launcher are essentially the same, with the spark context
creation occurring immediately, but in the background thereby minimizing the kernel’s startup time.

Kernel.json files also include a LAUNCH_OPTS: section in the env stanza to allow for custom parameters to be con-
veyed in the launcher’s environment. LAUNCH_OPTS are then referenced in the run.sh script as the initial arguments
to the launcher (see launch_ipykernel.py) . . .

2.5. Kernel Launchers 17

https://github.com/jupyter/enterprise_gateway/blob/enterprise_gateway/etc/kernelspecs/spark_python_yarn_cluster/kernel.json
https://github.com/jupyter/enterprise_gateway/blob/enterprise_gateway/etc/kernelspecs/spark_python_yarn_cluster/bin/run.sh
https://github.com/jupyter/enterprise_gateway/blob/enterprise_gateway/etc/kernel-launchers/python/scripts/launch_ipykernel.py

Enterprise Gateway Documentation, Release 2.0.0

eval exec \
"${SPARK_HOME}/bin/spark-submit" \
"${SPARK_OPTS}" \
"${PROG_HOME}/scripts/launch_ipykernel.py" \
"${LAUNCH_OPTS}" \
"$@"

2.6 Extending Enterprise Gateway

Theoretically speaking, enabling a kernel for use in other frameworks amounts to the following:

1. Build a kernel specification file that identifies the process proxy class to be used.

2. Implement the process proxy class such that it supports the four primitive functions of poll(), wait(),
send_signal(signum) and kill() along with launch_process().

3. If the process proxy corresponds to a remote process, derive the process proxy class from
RemoteProcessProxy and implement confirm_remote_startup() and handle_timeout().

4. Insert invocation of a launcher (if necessary) which builds the connection file and returns its contents on the
{response_address} socket.

18 Chapter 2. System Architecture

CHAPTER

THREE

SECURITY FEATURES

Jupyter Enterprise Gateway does not currently perform user authentication but, instead, assumes that all users issuing
requests have been previously authenticated. Recommended applications for this are Apache Knox or perhaps even
Jupyter Hub (e.g., if nb2kg-enabled notebook servers were spawned targeting an Enterprise Gateway cluster).

This section introduces some of the security features inherent in Enterprise Gateway (with more to come).

KERNEL_USERNAME

In order to convey the name of the authenicated user, KERNEL_USERNAME should be sent in the kernel creation
request via the env: entry. This will occur automatically within NB2KG since it propagates all environment variables
prefixed with KERNEL_. If the request does not include a KERNEL_USERNAME entry, one will be added to the
kernel’s launch environment with the value of the gateway user.

This value is then used within the authorization and impersonation functionality.

3.1 Authorization

By default, all users are authorized to start kernels. This behavior can be adjusted when situations arise where more
control is required. Basic authorization can be expressed in two ways.

3.1.1 Authorized Users

The command-line or configuration file option: EnterpriseGatewayApp.authorized_users can be speci-
fied to contain a list of user names indicating which users are permitted to launch kernels within the current gateway
server.

On each kernel launched, the authorized users list is searched for the value of KERNEL_USERNAME (case-sensitive).
If the user is found in the list the kernel’s launch sequence continues, otherwise HTTP Error 403 (Forbidden) is raised
and the request fails.

Warning: Since the authorized_users option must be exhaustive, it should be used only in situations where a
small and limited set of users are allowed access and empty otherwise.

3.1.2 Unauthorized Users

The command-line or configuration file option: EnterpriseGatewayApp.unauthorized_users can be
specified to contain a list of user names indicating which users are NOT permitted to launch kernels within the current
gateway server. The unauthorized_users list is always checked prior to the authorized_users list. If the
value of KERNEL_USERNAME appears in the unauthorized_users list, the request is immediately failed with
the same 403 (Forbidden) HTTP Error.

19

https://knox.apache.org/
https://jupyterhub.readthedocs.io/en/latest/

Enterprise Gateway Documentation, Release 2.0.0

From a system security standpoint, privileged users (e.g., root and any users allowed sudo privileges) should be
added to this option.

3.1.3 Authorization Failures

It should be noted that the corresponding messages logged when each of the above authorization failures occur are
slightly different. This allows the administrator to discern from which authorization list the failure was generated.

Failures stemming from inclusion in the unauthorized_users list will include text similar to the following:

User 'bob' is not authorized to start kernel 'Spark - Python (YARN Client Mode)'.
→˓Ensure
KERNEL_USERNAME is set to an appropriate value and retry the request.

Failures stemming from exclusion from a non-empty authorized_users list will include text similar to the fol-
lowing:

User 'bob' is not in the set of users authorized to start kernel 'Spark - Python
→˓(YARN Client Mode)'. Ensure
KERNEL_USERNAME is set to an appropriate value and retry the request.

3.2 User Impersonation

The Enterprise Gateway server leverages other technologies to implement user impersonation when launch-
ing kernels. This option is configured via two pieces of information: EG_IMPERSONATION_ENABLED and
KERNEL_USERNAME.

EG_IMPERSONATION_ENABLED indicates the intention that user impersonation should be performed and can also
be conveyed via the command-line boolean option EnterpriseGatewayApp.impersonation_enabled
(default = False).

KERNEL_USERNAME is also conveyed within the environment of the kernel launch sequence where its value is used
to indicate the user that should be impersonated.

3.2.1 Impersonation in YARN Cluster Mode

In a cluster managed by the YARN resource manager, impersonation is implemented by leveraging kerberos, and thus
require this security option as a pre-requisite for user impersonation. When user impersonation is enabled, kernels
are launched with the --proxy-user ${KERNEL_USERNAME} which will tell YARN to launch the kernel in a
container used by the provided user name.

Note that, when using kerberos in a YARN managed cluster, the gateway user (elyra by default) needs to be set up
as a proxyuser superuser in hadoop configuration. Please refer to the Hadoop documentation regarding the proper
configuration steps.

3.2.2 SPNEGO Authentication to YARN APIs

When kerberos is enabled in a YARN managed cluster, the administration uis can be configured to require authentica-
tion/authorization via SPENEGO. When running Enterprise Gateway in a environment configured this way, we need
to convey an extra configuration to enable the proper authorization when communicating with YARN via the YARN
APIs.

20 Chapter 3. Security Features

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/Superusers.html

Enterprise Gateway Documentation, Release 2.0.0

YARN_ENDPOINT_SECURITY_ENABLED indicates the requirement to use SPNEGO authentication/authorization
when connecting with the YARN APIs and can also be conveyed via the command-line boolean option
EnterpriseGatewayApp.yarn_endpoint_security_enabled (default = False)

3.2.3 Impersonation in Standalone or YARN Client Mode

Impersonation performed in standalone or YARN cluster modes tends to take the form of using sudo to perform the
kernel launch as the target user. This can also be configured within the run.sh script and requires the following:

1. The gateway user (i.e., the user in which Enterprise Gateway is running) must be enabled to perform sudo oper-
ations on each potential host. This enablement must also be done to prevent password prompts since Enterprise
Gateway runs in the background. Refer to your operating system documentation for details.

2. Each user identified by KERNEL_USERNAME must be associated with an actual operating system user on each
host.

3. Once the gateway user is configured for sudo privileges it is strongly recommended that that user be included
in the set of unauthorized_users. Otherwise, kernels not configured for impersonation, or those requests
that do not include KERNEL_USERNAME, will run as the, now, highly privileged gateway user!

WARNING: Should impersonation be disabled after granting the gateway user elevated privileges, it is strongly rec-
ommended those privileges be revoked (on all hosts) prior to starting kernels since those kernels will run as the
gateway user regardless of the value of KERNEL_USERNAME.

3.3 SSH Tunneling

Jupyter Enterprise Gateway is configured to perform SSH tunneling on the five ZeroMQ kernel sockets as well as
the communication socket created within the launcher and used to perform remote and cross-user signalling func-
tionality. SSH tunneling is NOT enabled by default. Tunneling can be enabled/disabled via the environment variable
EG_ENABLE_TUNNELING=False. Note, there is no command-line or configuration file support for this variable.

Note that SSH by default validates host keys before connecting to remote hosts and the connection will fail for invalid
or unknown hosts. Enterprise Gateway honors this requirement, and invalid or unknown hosts will cause tunneling to
fail. Please perform necessary steps to validate all hosts before enabling SSH tunneling, such as:

• SSH to each node cluster and accept the host key properly

• Configure SSH to disable StrictHostKeyChecking

3.4 Securing Enterprise Gateway Server

3.4.1 Using SSL for encrypted communication

Enterprise Gateway supports Secure Sockets Layer (SSL) communication with its clients. With SSL enabled, all the
communication between the server and client are encrypted and highly secure.

1. You can start Enterprise Gateway to communicate via a secure protocol mode by setting the certfile and
keyfile options with the command:

jupyter enterprisegateway --ip=0.0.0.0 --port_retries=0 --certfile=mycert.pem --
→˓keyfile=mykey.key

As server starts up, the log should reflect the following,

3.3. SSH Tunneling 21

https://github.com/jupyter/enterprise_gateway/blob/master/etc/kernelspecs/spark_python_yarn_client/bin/run.sh

Enterprise Gateway Documentation, Release 2.0.0

[EnterpriseGatewayApp] Jupyter Enterprise Gateway at https://localhost:8888

Note: Enterprise Gateway server is started with HTTPS instead of HTTP, meaning server side SSL is enabled.

TIP: A self-signed certificate can be generated with openssl. For example, the following command will create a
certificate valid for 365 days with both the key and certificate data written to the same file:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout mykey.key -out mycert.
→˓pem

2. With Enterprise Gateway server SSL enabled, now you need to configure the client side SSL, which is NB2KG
serverextension.

During Jupyter notebook server startup, export the following environment variables where NB2KG will access
during runtime:

export KG_CLIENT_CERT=${PATH_TO_PEM_FILE}
export KG_CLIENT_KEY=${PATH_TO_KEY_FILE}
export KG_CLIENT_CA=${PATH_TO_SELFSIGNED_CA}

Note: If using a self-signed certificate, you can set KG_CLIENT_CA same as KG_CLIENT_CERT.

3.4.2 Using Enterprise Gateway configuration file

You can also utilize the Enterprise Gateway configuration file to set static configurations for the server.

1. If you do not already have a configuration file, generate a Enterprise Gateway configuration file by running the
following command:

jupyter enterprisegateway --generate-config

2. By default, the configuration file will be generated ~/.jupyter/
jupyter_enterprise_gateway_config.py.

3. By default, all the configuration fields in jupyter_enterprise_gateway_config.py are commented
out. To enable SSL from the configuration file, modify the corresponding parameter to the appropriate value.

s,c.KernelGatewayApp.certfile = '/absolute/path/to/your/certificate/fullchain.pem'
s,c.KernelGatewayApp.keyfile = '/absolute/path/to/your/certificate/privatekey.key'

4. Using configuration file achieves the same result as starting the server with --certfile and --keyfile,
this way provides better readability and debuggability.

After configuring the above, the communication between NB2KG and Enterprise Gateway is SSL enabled.

22 Chapter 3. Security Features

CHAPTER

FOUR

ANCILLARY FEATURES

This page points out some features and functionality worthy of your attention but not necessarily part of the Jupyter
Enterprise Gateway implementation.

4.1 Culling idle kernels

With the adoption of notebooks and interactive development for data science, a new “resource utilization” pattern has
arisen, where kernel resources are locked for a given notebook, but due to interactive development process it might be
idle for a long period of time causing the cluster resources to starve. One way to workaround this problem is to enable
culling of idle kernels after a specific timeout period.

Idle kernel culling is set to “off” by default. It’s enabled by setting --MappingKernelManager.
cull_idle_timeout to a positive value representing the number of seconds a kernel must remain idle to be
culled (default: 0, recommended: 43200, 12 hours).

You can also configure the interval that the kernels are checked for their idle timeouts by adjusting the setting
--MappingKernelManager.cull_interval to a positive value. If the interval is not set or set to a non-
positive value, the system uses 300 seconds as the default value: (default: 300 seconds).

There are use-cases where we would like to enable only culling of idle kernels that have no connections (e.g. the
notebook browser was closed without stopping the kernel first), this can be configured by adjusting the setting
--MappingKernelManager.cull_connected (default: False).

Here’s an updated start script that provides some default configuration to enable the culling of idle kernels:

#!/bin/bash

LOG=/var/log/enterprise_gateway.log
PIDFILE=/var/run/enterprise_gateway.pid

jupyter enterprisegateway --ip=0.0.0.0 --port_retries=0 --log-level=DEBUG \
--MappingKernelManager.cull_idle_timeout=43200 --MappingKernelManager.cull_

→˓interval=60 > $LOG 2>&1 &

if ["$?" -eq 0]; then
echo $! > $PIDFILE

else
exit 1

fi

23

Enterprise Gateway Documentation, Release 2.0.0

4.2 Installing Python modules from within notebook cell

To be able to honor user isolation in a multi-tenant world, installing Python modules using pip from within a Notebook
Cell should be done using the --user command-line option as shown below:

!pip install --user <module-name>

This results in the Python module to be installed in $USER/.local/lib/python<version>/
site-packages folder. PYTHONPATH environment variable defined in kernel.json must include
$USER/.local/lib/python<version>/site-packages folder so that the newly installed module
can be successfully imported in a subsequent Notebook Cell as shown below:

import <module-name>

24 Chapter 4. Ancillary Features

CHAPTER

FIVE

USE CASES

Jupyter Enterprise Gateway addresses specific use cases for different personas. We list a few below:

• As an administrator, I want to fix the bottleneck on the Kernel Gateway server due to large number of kernels
running on it and the size of each kernel (spark driver) process, by deploying the Enterprise Gateway, such that
kernels can be launched as managed resources within YARN, distributing the resource-intensive driver processes
across the YARN cluster, while still allowing the data analysts to leverage the compute power of a large YARN
cluster.

• As an administrator, I want to have some user isolation such that user processes are protected against each
other and user can preserve and leverage their own environment, i.e. libraries and/or packages.

• As a data scientist, I want to run my notebook using the Enterprise Gateway such that I can free up resources
on my own laptop and leverage my company’s large YARN cluster to run my compute-intensive jobs.

• As a solution architect, I want to explore supporting a different resource manager with Enterprise Gateway,
e.g. Kubernetes, by extending and implementing a new ProcessProxy class such that I can easily take advantage
of specific functionality provided by the resource manager.

• As an administrator, I want to constrain applications to specific port ranges so I can more easily identify issues
and manage network configurations that adhere to my corporate policy.

• As an administrator, I want to constrain the number of active kernels that each of my users can have at any
given time.

25

Enterprise Gateway Documentation, Release 2.0.0

26 Chapter 5. Use Cases

CHAPTER

SIX

LOCAL MODE

The Local deployment can be useful for local development and is not meant to be run in production environments as
it subjects the gateway server to resource exhaustion.

If you just want to try EG in a local setup, you can use the following kernelspec (no need for a launcher):

{
"display_name": "Python 3 Local",
"language": "python",
"metadata": {
"process_proxy": {
"class_name": "enterprise_gateway.services.processproxies.processproxy.

→˓LocalProcessProxy"
}

},
"argv": [
"python",
"-m",
"ipykernel_launcher",
"-f",
"{connection_file}"

]
}

process_proxy is optional (if Enterprise Gateway encounters a kernelspec without the process_proxy stanza,
it will treat that kernelspec as if it contained LocalProcessProxy).

Side note: You can run a Local kernel in Distributed mode by setting remote_hosts to the localhost. Why would
you do that?

1. One reason is that it decreases the window in which a port conflict can occur since the 5 kernel ports are created
by the launcher (within the same process and therefore closer to the actual invocation of the kernel) rather than
by the server prior to the launch of the kernel process.

2. The second reason is that auto-restarted kernels - when an issue occurs - say due to a port conflict - will create
a new set of ports rather than try to re-use the same set that produced the failure in the first place. In this
case, you’d want to use the per-kernel configuration approach and set remote_hosts in the config stanza of
the process_proxy stanza (using the stanza instead of the global EG_REMOTE_HOSTS allows you to not
interfere with the other resource managers configuration, e.g. Spark Standalone or YARN Client kernels - Those
other kernels need to be able to continue leveraging the full cluster nodes).

27

./kernel-distributed.html
./config-options.html#per-kernel-configuration-overrides

Enterprise Gateway Documentation, Release 2.0.0

28 Chapter 6. Local Mode

CHAPTER

SEVEN

DISTRIBUTED MODE

This page describes the approach taken for integrating Enterprise Gateway into a distributed set of hosts, without
cluster resource managers.

The following sample kernelspecs are currently available on Distributed mode:

• python_distributed

Install the python_distributed kernelspec on all nodes.

wget https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_
→˓enterprise_gateway_kernelspecs-2.0.0.tar.gz
KERNELS_FOLDER=/usr/local/share/jupyter/kernels
tar -zxvf jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz --strip 1 --directory
→˓$KERNELS_FOLDER/python_distributed/ python_distributed/

The python_distributed kernelspec uses DistributedProcessProxywhich is responsible for the launch
and management of kernels distributed across and explicitly defined set of hosts using ssh. Hosts are determined via a
round-robin algorithm (that we should make pluggable someday).

The set of remote hosts are derived from two places.

• The configuration option: EnterpriseGatewayApp.remote_hosts who’s default value comes from the env variable
EG_REMOTE_HOSTS - which, itself, defaults to ‘localhost’.

• The config option can be overridden on a per-kernel basis if the process_proxy stanza contains a config stanza
where there’s a remote_hosts entry. If present, this value will be used instead.

You have to ensure passwordless SSH from the EG host to all other hosts for the user under which EG is run.

29

Enterprise Gateway Documentation, Release 2.0.0

30 Chapter 7. Distributed Mode

CHAPTER

EIGHT

YARN CLUSTER MODE

To leverage the full distributed capabilities of Jupyter Enterprise Gateway, there is a need to provide additional con-
figuration options in a cluster deployment.

The following sample kernelspecs are currently available on YARN cluster:

• spark_R_yarn_cluster

• spark_python_yarn_client

• spark_scala_yarn_client

The distributed capabilities are currently based on an Apache Spark cluster utilizing YARN as the Resource Manager
and thus require the following environment variables to be set to facilitate the integration between Apache Spark and
YARN components:

• SPARK_HOME: Must point to the Apache Spark installation path

SPARK_HOME:/usr/hdp/current/spark2-client #For HDP
→˓distribution

• EG_YARN_ENDPOINT: Must point to the YARN Resource Manager endpoint if remote from YARN cluster

EG_YARN_ENDPOINT=http://${YARN_RESOURCE_MANAGER_FQDN}:8088/ws/v1/cluster #Common to
→˓YARN deployment

Note: If Enterprise Gateway is using an applicable HADOOP_CONF_DIR that contains a valid yarn-site.xml
file, then this config value can remain unset (default = None) and the YARN client library will locate the appropriate
Resource Manager from the configuration. This is also true in cases where the YARN cluster is configured for high
availability.

If Enterprise Gateway is remote from the YARN cluster (i.e., no HADOOP_CONF_DIR) and the YARN cluster is
configured for high availability, then the alternate endpoint should also be specified. . .

EG_ALT_YARN_ENDPOINT=http://${ALT_YARN_RESOURCE_MANAGER_FQDN}:8088/ws/v1/cluster
→˓#Common to YARN deployment

8.1 Configuring Kernels for YARN Cluster mode

For each supported Jupyter Kernel, we have provided sample kernel configurations and launchers as part of the release
jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz.

Considering we would like to enable the IPython Kernel that comes pre-installed with Anaconda to run on Yarn
Cluster mode, we would have to copy the sample configuration folder spark_python_yarn_cluster to where the
Jupyter kernels are installed (e.g. jupyter kernelspec list)

31

https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz

Enterprise Gateway Documentation, Release 2.0.0

wget https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_
→˓enterprise_gateway_kernelspecs-2.0.0.tar.gz
SCALA_KERNEL_DIR="$(jupyter kernelspec list | grep -w "python3" | awk '{print $2}')"
KERNELS_FOLDER="$(dirname "${SCALA_KERNEL_DIR}")"
mkdir $KERNELS_FOLDER/spark_python_yarn_cluster/
tar -zxvf jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz --strip 1 --directory
→˓$KERNELS_FOLDER/spark_python_yarn_cluster/ spark_python_yarn_cluster/

After that, you should have a kernel.json that looks similar to the one below:

{
"language": "python",
"display_name": "Spark - Python (YARN Cluster Mode)",
"metadata": {
"process_proxy": {
"class_name": "enterprise_gateway.services.processproxies.yarn.

→˓YarnClusterProcessProxy"
}

},
"env": {
"SPARK_HOME": "/usr/hdp/current/spark2-client",
"PYSPARK_PYTHON": "/opt/conda/bin/python",
"PYTHONPATH": "${HOME}/.local/lib/python3.6/site-packages:/usr/hdp/current/spark2-

→˓client/python:/usr/hdp/current/spark2-client/python/lib/py4j-0.10.6-src.zip",
"SPARK_YARN_USER_ENV": "PYTHONUSERBASE=/home/yarn/.local,PYTHONPATH=${HOME}/.

→˓local/lib/python3.6/site-packages:/usr/hdp/current/spark2-client/python:/usr/hdp/
→˓current/spark2-client/python/lib/py4j-0.10.6-src.zip,PATH=/opt/conda/bin:$PATH",

"SPARK_OPTS": "--master yarn --deploy-mode cluster --name ${KERNEL_ID:-ERROR__NO__
→˓KERNEL_ID} --conf spark.yarn.submit.waitAppCompletion=false",

"LAUNCH_OPTS": ""
},
"argv": [
"/usr/local/share/jupyter/kernels/spark_python_yarn_cluster/bin/run.sh",
"--RemoteProcessProxy.kernel-id",

"{kernel_id}",
"--RemoteProcessProxy.response-address",
"{response_address}"

]
}

8.2 Scala Kernel (Apache Toree kernel)

We have tested the latest version of Apache Toree with Scala 2.11 support. Please note that the Apache Toree kernel
is now bundled in the kernelspecs tar file for each of the Scala kernelspecs provided by Enterprise Gateway.

Follow the steps below to install/configure the Toree kernel:

Install Apache Toree Kernelspecs

Considering we would like to enable the Scala Kernel to run on YARN Cluster and Client mode we would have to
copy the sample configuration folder spark_scala_yarn_cluster to where the Jupyter kernels are installed (e.g. jupyter
kernelspec list)

wget https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_
→˓enterprise_gateway_kernelspecs-2.0.0.tar.gz
KERNELS_FOLDER=/usr/local/share/jupyter/kernels

(continues on next page)

32 Chapter 8. YARN Cluster Mode

http://toree.apache.org/

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

tar -zxvf jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz --strip 1 --directory
→˓$KERNELS_FOLDER/spark_scala_yarn_cluster/ spark_scala_yarn_cluster/

For more information about the Scala kernel, please visit the Apache Toree page.

8.3 Installing support for Python (IPython kernel)

The IPython kernel comes pre-installed with Anaconda and we have tested with its default version of IPython kernel.

Update the IPython Kernelspecs

Considering we would like to enable the IPython kernel to run on YARN Cluster and Client mode we would have
to copy the sample configuration folder spark_python_yarn_cluster to where the Jupyter kernels are installed (e.g.
jupyter kernelspec list)

wget https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_
→˓enterprise_gateway_kernelspecs-2.0.0.tar.gz
KERNELS_FOLDER=/usr/local/share/jupyter/kernels
tar -zxvf jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz --strip 1 --directory
→˓$KERNELS_FOLDER/spark_python_yarn_cluster/ spark_python_yarn_cluster/

For more information about the IPython kernel, please visit the IPython kernel page.

8.4 Installing support for R (IRkernel)

Install IRkernel

Perform the following steps on Jupyter Enterprise Gateway hosting system as well as all YARN workers

conda install --yes --quiet -c r r-essentials r-irkernel r-argparse
Create an R-script to run and install packages and update IRkernel
cat <<'EOF' > install_packages.R
install.packages(c('repr', 'IRdisplay', 'evaluate', 'git2r', 'crayon', 'pbdZMQ',

'devtools', 'uuid', 'digest', 'RCurl', 'curl', 'argparse'),
repos='http://cran.rstudio.com/')

devtools::install_github('IRkernel/IRkernel@0.8.14')
IRkernel::installspec(user = FALSE)
EOF
run the package install script
$ANACONDA_HOME/bin/Rscript install_packages.R
OPTIONAL: check the installed R packages
ls $ANACONDA_HOME/lib/R/library

Update the IRkernel Kernelspecs

Considering we would like to enable the IRkernel to run on YARN Cluster and Client mode we would have to copy the
sample configuration folder spark_R_yarn_cluster to where the Jupyter kernels are installed (e.g. jupyter kernelspec
list)

wget https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_
→˓enterprise_gateway_kernelspecs-2.0.0.tar.gz
KERNELS_FOLDER=/usr/local/share/jupyter/kernels
tar -zxvf jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz --strip 1 --directory
→˓$KERNELS_FOLDER/spark_R_yarn_cluster/ spark_R_yarn_cluster/

8.3. Installing support for Python (IPython kernel) 33

http://toree.apache.org/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/

Enterprise Gateway Documentation, Release 2.0.0

For more information about the iR kernel, please visit the IRkernel page.

After making any necessary adjustments such as updating SPARK_HOME or other environment specific configuration,
you now should have a new Kernel available which will use Jupyter Enterprise Gateway to execute your notebook cell
contents in distributed mode on a Spark/Yarn Cluster.

34 Chapter 8. YARN Cluster Mode

https://irkernel.github.io/

CHAPTER

NINE

YARN CLIENT MODE

Jupyter Enterprise Gateway extends Jupyter Kernel Gateway which means that by installing kernels in Enterprise
Gateway and using the vanila kernelspecs created during installation you will have your kernels running in client
mode with drivers running on the same host as Enterprise Gateway.

Having said that, even if you are not leveraging the full distributed capabilities of Jupyter Enterprise Gateway, client
mode can still help mitigate resource starvation by enabling a pseudo-distributed mode, where kernels are started in
different nodes of the cluster utilizing a round-robin algorithm. In this case, you can still experience bottlenecks on a
given node that receives requests to start “large” kernels, but otherwise, you will be better off compared to when all
kernels are started on a single node or as local processes, which is the default for vanilla Jupyter Notebook.

Please note also the YARN client mode can be considered as a Distributed mode. It just happen to use spark-submit
form different nodes in the cluster but uses DistributedProcessProxy.

The following sample kernelspecs are currently available on YARN client:

• spark_R_yarn_client

• spark_python_yarn_client

• spark_scala_yarn_client

The pseudo-distributed capabilities are currently supported in YARN Client mode and require the following environ-
ment variables to be set:

• SPARK_HOME: Must point to the Apache Spark installation path

SPARK_HOME:/usr/hdp/current/spark2-client #For HDP
→˓distribution

• EG_REMOTE_HOSTS must be set to a comma-separated set of FQDN hosts indicating the hosts available
for running kernels. (This can be specified via the command line as well: --EnterpriseGatewayApp.
remote_hosts)

EG_REMOTE_HOSTS=elyra-node-1.fyre.ibm.com,elyra-node-2.fyre.ibm.com,elyra-node-3.fyre.
→˓ibm.com,elyra-node-4.fyre.ibm.com,elyra-node-5.fyre.ibm.com

For each supported Jupyter Kernel, we have provided sample kernel configurations and launchers as part of the release
jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz.

Considering we would like to enable the IPython Kernel that comes pre-installed with Anaconda to run on Yarn Client
mode, we would have to copy the sample configuration folder spark_python_yarn_client to where the Jupyter kernels
are installed (e.g. jupyter kernelspec list)

wget https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_
→˓enterprise_gateway_kernelspecs-2.0.0.tar.gz
SCALA_KERNEL_DIR="$(jupyter kernelspec list | grep -w "python3" | awk '{print $2}')"

(continues on next page)

35

./kernel-distributed.html
https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

KERNELS_FOLDER="$(dirname "${SCALA_KERNEL_DIR}")"
tar -zxvf enterprise_gateway_kernelspecs.tar.gz --strip 1 --directory $KERNELS_FOLDER/
→˓spark_python_yarn_client/ spark_python_yarn_client/

After that, you should have a kernel.json that looks similar to the one below:

{
"language": "python",
"display_name": "Spark - Python (YARN Client Mode)",
"metadata": {
"process_proxy": {
"class_name": "enterprise_gateway.services.processproxies.distributed.

→˓DistributedProcessProxy"
}

},
"env": {
"SPARK_HOME": "/usr/hdp/current/spark2-client",
"PYSPARK_PYTHON": "/opt/conda/bin/python",
"PYTHONPATH": "${HOME}/.local/lib/python3.6/site-packages:/usr/hdp/current/spark2-

→˓client/python:/usr/hdp/current/spark2-client/python/lib/py4j-0.10.6-src.zip",
"SPARK_YARN_USER_ENV": "PYTHONUSERBASE=/home/yarn/.local,PYTHONPATH=${HOME}/.

→˓local/lib/python3.6/site-packages:/usr/hdp/current/spark2-client/python:/usr/hdp/
→˓current/spark2-client/python/lib/py4j-0.10.6-src.zip,PATH=/opt/conda/bin:$PATH",

"SPARK_OPTS": "--master yarn --deploy-mode client --name ${KERNEL_ID:-ERROR__NO__
→˓KERNEL_ID} --conf spark.yarn.submit.waitAppCompletion=false",

"LAUNCH_OPTS": ""
},
"argv": [
"/usr/local/share/jupyter/kernels/spark_python_yarn_client/bin/run.sh",
"--RemoteProcessProxy.kernel-id",

"{kernel_id}",
"--RemoteProcessProxy.response-address",
"{response_address}"

]
}

After making any necessary adjustments such as updating SPARK_HOME or other environment specific configuration,
you now should have a new Kernel available which will use Jupyter Enterprise Gateway to execute your notebook cell
contents.

9.1 Scala Kernel (Apache Toree kernel)

We have tested the latest version of Apache Toree with Scala 2.11 support. Please note that the Apache Toree kernel
is now bundled in the kernelspecs tar file for each of the Scala kernelspecs provided by Enterprise Gateway.

Follow the steps below to install/configure the Toree kernel:

Install Apache Toree Kernelspecs

Considering we would like to enable the Scala Kernel to run on YARN Cluster and Client mode we would have to
copy the sample configuration folder spark_scala_yarn_client to where the Jupyter kernels are installed (e.g. jupyter
kernelspec list)

36 Chapter 9. YARN Client Mode

http://toree.apache.org/

Enterprise Gateway Documentation, Release 2.0.0

wget https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_
→˓enterprise_gateway_kernelspecs-2.0.0.tar.gz
KERNELS_FOLDER=/usr/local/share/jupyter/kernels
tar -zxvf jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz --strip 1 --directory
→˓$KERNELS_FOLDER/spark_scala_yarn_client/ spark_scala_yarn_client/

For more information about the Scala kernel, please visit the Apache Toree page.

9.2 Installing support for Python (IPython kernel)

The IPython kernel comes pre-installed with Anaconda and we have tested with its default version of IPython kernel.

Update the IPython Kernelspecs

Considering we would like to enable the IPython kernel to run on YARN Cluster and Client mode we would have
to copy the sample configuration folder spark_python_yarn_client to where the Jupyter kernels are installed (e.g.
jupyter kernelspec list)

wget https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_
→˓enterprise_gateway_kernelspecs-2.0.0.tar.gz
KERNELS_FOLDER=/usr/local/share/jupyter/kernels
tar -zxvf jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz --strip 1 --directory
→˓$KERNELS_FOLDER/spark_python_yarn_client/ spark_python_yarn_client/

For more information about the IPython kernel, please visit the IPython kernel page.

9.3 Installing support for R (IRkernel)

Install IRkernel

Perform the following steps on Jupyter Enterprise Gateway hosting system as well as all YARN workers

conda install --yes --quiet -c r r-essentials r-irkernel r-argparse
Create an R-script to run and install packages and update IRkernel
cat <<'EOF' > install_packages.R
install.packages(c('repr', 'IRdisplay', 'evaluate', 'git2r', 'crayon', 'pbdZMQ',

'devtools', 'uuid', 'digest', 'RCurl', 'curl', 'argparse'),
repos='http://cran.rstudio.com/')

devtools::install_github('IRkernel/IRkernel@0.8.14')
IRkernel::installspec(user = FALSE)
EOF
run the package install script
$ANACONDA_HOME/bin/Rscript install_packages.R
OPTIONAL: check the installed R packages
ls $ANACONDA_HOME/lib/R/library

Update the IRkernel Kernelspecs

Considering we would like to enable the IRkernel to run on YARN Cluster and Client mode we would have to copy the
sample configuration folder spark_R_yarn_client to where the Jupyter kernels are installed (e.g. jupyter kernelspec
list)

9.2. Installing support for Python (IPython kernel) 37

http://toree.apache.org/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/

Enterprise Gateway Documentation, Release 2.0.0

wget https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_
→˓enterprise_gateway_kernelspecs-2.0.0.tar.gz
KERNELS_FOLDER=/usr/local/share/jupyter/kernels
tar -zxvf jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz --strip 1 --directory
→˓$KERNELS_FOLDER/spark_R_yarn_client/ spark_R_yarn_client/

For more information about the iR kernel, please visit the IRkernel page.

After making any necessary adjustments such as updating SPARK_HOME or other environment specific configuration,
you now should have a new Kernel available which will use Jupyter Enterprise Gateway to execute your notebook cell
contents in distributed mode on a Spark/Yarn Cluster.

38 Chapter 9. YARN Client Mode

https://irkernel.github.io/

CHAPTER

TEN

SPARK STANDALONE

Jupyter Enterprise Gateway extends Jupyter Kernel Gateway which means that by installing kernels in Enterprise
Gateway and using the vanila kernelspecs created during installation you will have your kernels running in client
mode with drivers running on the same host as Enterprise Gateway.

Having said that, even if you are not leveraging the full distributed capabilities of Jupyter Enterprise Gateway, client
mode can still help mitigate resource starvation by enabling a pseudo-distributed mode, where kernels are started in
different nodes of the cluster utilizing a round-robin algorithm. In this case, you can still experience bottlenecks on a
given node that receives requests to start “large” kernels, but otherwise, you will be better off compared to when all
kernels are started on a single node or as local processes, which is the default for vanilla Jupyter Notebook.

The pseudo-distributed capabilities are currently supported in Spark Standalone and require the following environment
variables to be set:

• SPARK_HOME: Must point to the Apache Spark installation path

SPARK_HOME:/usr/hdp/current/spark2-client #For HDP
→˓distribution

• EG_REMOTE_HOSTS must be set to a comma-separated set of FQDN hosts indicating the hosts available
for running kernels. (This can be specified via the command line as well: --EnterpriseGatewayApp.
remote_hosts)

EG_REMOTE_HOSTS=elyra-node-1.fyre.ibm.com,elyra-node-2.fyre.ibm.com,elyra-node-3.fyre.
→˓ibm.com,elyra-node-4.fyre.ibm.com,elyra-node-5.fyre.ibm.com

10.1 Configuring Kernels for Spark Standalone

Although Enterprise Gateway does not currently provide sample kernelspecs for Spark standalone, here are the steps
necessary to convert a yarn_client kernelspec to standalone.

For each supported Jupyter Kernel, we have provided sample kernel configurations and launchers as part of the release
jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz.

Considering we would like to enable the IPython Kernel that comes pre-installed with Anaconda to run on Spark
Standalone, we would have to copy the sample configuration folder spark_python_yarn_client to where the Jupyter
kernels are installed (e.g. jupyter kernelspec list) and rename it to spark_python_spark_standalone*

wget https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_
→˓enterprise_gateway_kernelspecs-2.0.0.tar.gz
SCALA_KERNEL_DIR="$(jupyter kernelspec list | grep -w "python3" | awk '{print $2}')"
KERNELS_FOLDER="$(dirname "${SCALA_KERNEL_DIR}")"

(continues on next page)

39

https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

tar -zxvf enterprise_gateway_kernelspecs.tar.gz --strip 1 --directory $KERNELS_FOLDER/
→˓spark_python_yarn_client/ spark_python_yarn_client/
mv $KERNELS_FOLDER/spark_python_yarn_client $KERNELS_FOLDER/spark_python_spark_
→˓standalone

You need to edit the kernel.json:

• Update the display_name with e.g. Spark - Python (Spark Standalone).

• Update the --master option in the SPARK_OPTS to point to the spark master node rather than indicate
--deploy-mode client.

• Update SPARK_OPTS and remove the spark.yarn.submit.waitAppCompletion=false.

After that, you should have a kernel.json that looks similar to the one below:

{
"language": "python",
"display_name": "Spark - Python (Spark Standalone)",
"metadata": {
"process_proxy": {
"class_name": "enterprise_gateway.services.processproxies.distributed.

→˓DistributedProcessProxy"
}

},
"env": {
"SPARK_HOME": "/usr/hdp/current/spark2-client",
"PYSPARK_PYTHON": "/opt/conda/bin/python",
"PYTHONPATH": "${HOME}/.local/lib/python3.6/site-packages:/usr/hdp/current/spark2-

→˓client/python:/usr/hdp/current/spark2-client/python/lib/py4j-0.10.6-src.zip",
"SPARK_YARN_USER_ENV": "PYTHONUSERBASE=/home/yarn/.local,PYTHONPATH=${HOME}/.

→˓local/lib/python3.6/site-packages:/usr/hdp/current/spark2-client/python:/usr/hdp/
→˓current/spark2-client/python/lib/py4j-0.10.6-src.zip,PATH=/opt/conda/bin:$PATH",

"SPARK_OPTS": "--master spark://127.0.0.1:7077 --name ${KERNEL_ID:-ERROR__NO__
→˓KERNEL_ID}",

"LAUNCH_OPTS": ""
},
"argv": [
"/usr/local/share/jupyter/kernels/spark_python_spark_standalone/bin/run.sh",
"--RemoteProcessProxy.kernel-id",

"{kernel_id}",
"--RemoteProcessProxy.response-address",
"{response_address}"

]
}

After making any necessary adjustments such as updating SPARK_HOME or other environment specific configuration,
you now should have a new Kernel available which will use Jupyter Enterprise Gateway to execute your notebook cell
contents.

10.2 Scala Kernel (Apache Toree kernel)

We have tested the latest version of Apache Toree with Scala 2.11 support. Please note that the Apache Toree kernel
is now bundled in the kernelspecs tar file for each of the Scala kernelspecs provided by Enterprise Gateway.

Follow the steps below to install/configure the Toree kernel:

40 Chapter 10. Spark Standalone

http://toree.apache.org/

Enterprise Gateway Documentation, Release 2.0.0

Install Apache Toree Kernelspecs

Considering we would like to enable the Scala Kernel to run on YARN Cluster and Client mode we would have to
copy the sample configuration folder spark_scala_yarn_client to where the Jupyter kernels are installed (e.g. jupyter
kernelspec list)

wget https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_
→˓enterprise_gateway_kernelspecs-2.0.0.tar.gz
KERNELS_FOLDER=/usr/local/share/jupyter/kernels
tar -zxvf jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz --strip 1 --directory
→˓$KERNELS_FOLDER/spark_scala_yarn_client/ spark_scala_yarn_client/
mv $KERNELS_FOLDER/spark_scala_yarn_client $KERNELS_FOLDER/spark_scala_spark_
→˓standalone

For more information about the Scala kernel, please visit the Apache Toree page.

10.3 Installing support for Python (IPython kernel)

The IPython kernel comes pre-installed with Anaconda and we have tested with its default version of IPython kernel.

Update the IPython Kernelspecs

Considering we would like to enable the IPython kernel to run on YARN Cluster and Client mode we would have
to copy the sample configuration folder spark_python_yarn_client to where the Jupyter kernels are installed (e.g.
jupyter kernelspec list)

wget https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_
→˓enterprise_gateway_kernelspecs-2.0.0.tar.gz
KERNELS_FOLDER=/usr/local/share/jupyter/kernels
tar -zxvf jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz --strip 1 --directory
→˓$KERNELS_FOLDER/spark_python_yarn_client/ spark_python_yarn_client/
mv $KERNELS_FOLDER/spark_python_yarn_client $KERNELS_FOLDER/spark_python_spark_
→˓standalone

For more information about the IPython kernel, please visit the IPython kernel page.

10.4 Installing support for R (IRkernel)

Install IRkernel

Perform the following steps on Jupyter Enterprise Gateway hosting system as well as all YARN workers

conda install --yes --quiet -c r r-essentials r-irkernel r-argparse
Create an R-script to run and install packages and update IRkernel
cat <<'EOF' > install_packages.R
install.packages(c('repr', 'IRdisplay', 'evaluate', 'git2r', 'crayon', 'pbdZMQ',

'devtools', 'uuid', 'digest', 'RCurl', 'curl', 'argparse'),
repos='http://cran.rstudio.com/')

devtools::install_github('IRkernel/IRkernel@0.8.14')
IRkernel::installspec(user = FALSE)
EOF
run the package install script
$ANACONDA_HOME/bin/Rscript install_packages.R
OPTIONAL: check the installed R packages
ls $ANACONDA_HOME/lib/R/library

10.3. Installing support for Python (IPython kernel) 41

http://toree.apache.org/
http://ipython.readthedocs.io/en/stable/
http://ipython.readthedocs.io/en/stable/

Enterprise Gateway Documentation, Release 2.0.0

Update the IRkernel Kernelspecs

Considering we would like to enable the IRkernel to run on YARN Cluster and Client mode we would have to copy the
sample configuration folder spark_R_yarn_client to where the Jupyter kernels are installed (e.g. jupyter kernelspec
list)

wget https://github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_
→˓enterprise_gateway_kernelspecs-2.0.0.tar.gz
KERNELS_FOLDER=/usr/local/share/jupyter/kernels
tar -zxvf jupyter_enterprise_gateway_kernelspecs-2.0.0.tar.gz --strip 1 --directory
→˓$KERNELS_FOLDER/spark_R_yarn_client/ spark_R_yarn_client/
mv $KERNELS_FOLDER/spark_R_yarn_client $KERNELS_FOLDER/spark_R_spark_standalone

For more information about the iR kernel, please visit the IRkernel page.

After making any necessary adjustments such as updating SPARK_HOME or other environment specific configuration,
you now should have a new Kernel available which will use Jupyter Enterprise Gateway to execute your notebook cell
contents in distributed mode on a Spark/Yarn Cluster.

42 Chapter 10. Spark Standalone

https://irkernel.github.io/

CHAPTER

ELEVEN

KUBERNETES

This page describes the approach taken for integrating Enterprise Gateway into an existing Kubernetes cluster.

In this solution, Enterprise Gateway is, itself, provisioned as a Kubernetes deployment and exposed as a Kubernetes
service. In this way, Enterprise Gateway can leverage load balancing and high availability functionality provided by
Kubernetes (although HA cannot be fully realized until EG supports persistent sessions).

The following sample kernelspecs are currently available on Kubernetes:

• R_kubernetes

• python_kubernetes

• python_tf_gpu_kubernetes

• python_tf_kubernetes

• scala_kubernetes

• spark_R_kubernetes

• spark_python_kubernetes

• spark_scala_kubernetes

As with all kubernetes deployments, Enterprise Gateway is built into a docker image. The base Enterprise Gateway
image is elyra/enterprise-gateway and can be found in the Enterprise Gateway dockerhub organization elyra, along
with other kubernetes-based images. See Runtime Images for image details.

When deployed within a spark-on-kubernetes cluster, Enterprise Gateway can easily support cluster-managed kernels
distributed across the cluster. Enterprise Gateway will also provide standalone (i.e., vanilla) kernel invocation (where
spark contexts are not automatically created) which also benefits from their distribution across the cluster.

11.1 Enterprise Gateway Deployment

Enterprise Gateway manifests itself as a Kubernetes deployment, exposed externally by a Kubernetes service. It is
identified by the name enterprise-gateway within the cluster. In addition, all objects related to Enterprise
Gateway, including kernel instances, have the kubernetes label of app=enterprise-gateway applied.

The service is currently configured as type NodePort but is intended for type LoadBalancer when appropriate
network plugins are available. Because kernels are stateful, the service is also configured with a sessionAffinity
of ClientIP. As a result, kernel creation requests will be routed to different deployment instances (see deploy-
ment) thereby diminishing the need for a LoadBalancer type. Here’s the service yaml entry from enterprise-
gateway.yaml:

43

https://hub.docker.com/r/elyra/enterprise-gateway/
https://hub.docker.com/r/elyra/
docker.html#runtime-images
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://github.com/jupyter/enterprise_gateway/blob/master/etc/kubernetes/enterprise-gateway.yaml
https://github.com/jupyter/enterprise_gateway/blob/master/etc/kubernetes/enterprise-gateway.yaml

Enterprise Gateway Documentation, Release 2.0.0

apiVersion: v1
kind: Service
metadata:

labels:
app: enterprise-gateway

name: enterprise-gateway
namespace: enterprise-gateway

spec:
ports:
- name: http
port: 8888
targetPort: 8888

selector:
gateway-selector: enterprise-gateway

sessionAffinity: ClientIP
type: NodePort

The deployment yaml essentially houses the pod description. By increasing the number of replicas a configuration
can experience instant benefits of distributing Enterprise Gateway instances across the cluster. This implies that once
session persistence is provided, we should be able to provide highly available (HA) kernels. Here’s the yaml portion
from enterprise-gateway.yaml that defines the Kubernetes deployment and pod (some items may have changed):

apiVersion: apps/v1beta2
kind: Deployment
metadata:

name: enterprise-gateway
namespace: enterprise-gateway
labels:
gateway-selector: enterprise-gateway
app: enterprise-gateway
component: enterprise-gateway

spec:
Uncomment/Update to deploy multiple replicas of EG
replicas: 1

selector:
matchLabels:

gateway-selector: enterprise-gateway
template:
metadata:
labels:

gateway-selector: enterprise-gateway
app: enterprise-gateway
component: enterprise-gateway

spec:
Created above.
serviceAccountName: enterprise-gateway-sa
containers:
- env:

Created above.
- name: EG_NAMESPACE
value: "enterprise-gateway"

Created above. Used if no KERNEL_NAMESPACE is provided by client.
- name: EG_KERNEL_CLUSTER_ROLE
value: "kernel-controller"

All kernels reside in the EG namespace if True, otherwise KERNEL_NAMESPACE

(continues on next page)

44 Chapter 11. Kubernetes

https://github.com/jupyter/enterprise_gateway/blob/master/etc/kubernetes/enterprise-gateway.yaml

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

must be provided or one will be created for each kernel.
- name: EG_SHARED_NAMESPACE
value: "False"

- name: EG_TUNNELING_ENABLED
value: "False"

- name: EG_CULL_IDLE_TIMEOUT
value: "600"

- name: EG_LOG_LEVEL
value: "DEBUG"

- name: EG_KERNEL_LAUNCH_TIMEOUT
value: "60"

- name: EG_KERNEL_WHITELIST
value: "['r_kubernetes','python_kubernetes','python_tf_kubernetes','scala_

→˓kubernetes','spark_r_kubernetes','spark_python_kubernetes','spark_scala_kubernetes']
→˓"

Ensure the following VERSION tag is updated to the version of Enterprise
→˓Gateway you wish to run

image: elyra/enterprise-gateway:VERSION
k8s will only pull :latest all the time.
the following line will make sure that :VERSION is always pulled
You should remove this if you want to pin EG to a release tag
imagePullPolicy: Always
name: enterprise-gateway
args: ["--gateway"]
ports:
- containerPort: 8888

11.1.1 Namespaces

A best practice for Kubernetes applications running in an enterprise is to isolate applications via namespaces. Since
Enterprise Gateway also requires isolation at the kernel level, it makes sense to use a namespace for each kernel, by
default.

The initial namespace is created in the enterprise-gateway.yaml file using a default name of
enterprise-gateway. This name is communicated to the EG application via the env variable EG_NAMESPACE.
All Enterprise Gateway components reside in this namespace.

apiVersion: apps/v1beta2
kind: Deployment
metadata:

name: enterprise-gateway
namespace: enterprise-gateway

By default, kernel namespaces are created when the respective kernel is launched. At that time, the kernel namespace
name is computed from the kernel username (KERNEL_USERNAME) and its Id (KERNEL_ID) just like the kernel pod
name. Upon a kernel’s termination, this namespace - provided it was created by Enterprise Gateway - will be deleted.

Installations wishing to pre-create the kernel namespace can do so by conveying the name of the kernel namespace via
KERNEL_NAMESPACE in the env portion of the kernel creation request. (They must also provide the namespace’s
service account name via KERNEL_SERVICE_ACCOUNT_NAME - see next section.) When KERNEL_NAMESPACE
is set, Enterprise Gateway will not attempt to create a kernel-specific namespace, nor will it attempt its deletion. As a
result, kernel namespace lifecycle management is the user’s responsibility.

Although not recommended, installations requiring everything in the same namespace - Enterprise Gateway and all
its kernels - can do so by setting env EG_SHARED_NAMESPACE to True. When set, all kernels will run in the

11.1. Enterprise Gateway Deployment 45

Enterprise Gateway Documentation, Release 2.0.0

enterprise gateway namespace, essentially eliminating all aspects of isolation between kernel instances.

11.1.2 Role-Based Access Control (RBAC)

Another best practice of Kubernetes applications is to define the minimally viable set of permissions for the application.
Enterprise Gateway does this by defining role-based access control (RBAC) objects for both Enterprise Gateway and
kernels.

Because the Enterprise Gateway pod must create kernel namespaces, pods, services (for Spark support) and rolebind-
ings, a cluster-scoped role binding is required. The cluster role binding enterprise-gateway-controller
also references the subject, enterprise-gateway-sa, which is the service account associated with the Enterprise
Gateway namespace and also created by the yaml file.

apiVersion: v1
kind: ServiceAccount
metadata:

name: enterprise-gateway-sa
namespace: enterprise-gateway
labels:
app: enterprise-gateway
component: enterprise-gateway

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:

name: enterprise-gateway-controller
labels:
app: enterprise-gateway
component: enterprise-gateway

rules:
- apiGroups: [""]
resources: ["pods", "namespaces", "services", "configmaps", "secrets",

→˓"persistentvolumnes", "persistentvolumeclaims"]
verbs: ["get", "watch", "list", "create", "delete"]

- apiGroups: ["rbac.authorization.k8s.io"]
resources: ["rolebindings"]
verbs: ["get", "list", "create", "delete"]

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:

name: enterprise-gateway-controller
labels:
app: enterprise-gateway
component: enterprise-gateway

subjects:
- kind: ServiceAccount
name: enterprise-gateway-sa
namespace: enterprise-gateway

roleRef:
kind: ClusterRole
name: enterprise-gateway-controller
apiGroup: rbac.authorization.k8s.io

The enterprise-gateway.yaml file also defines the minimally viable roles for a kernel pod - most of which are
required for Spark support. Since kernels, by default, reside within their own namespace created upon their launch,
a cluster role is used within a namespace-scoped role binding created when the kernel’s namespace is created. The

46 Chapter 11. Kubernetes

Enterprise Gateway Documentation, Release 2.0.0

name of the kernel cluster role is kernel-controller and, when Enterprise Gateway creates the namespace and
role binding, is also the name of the role binding instance.

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:

name: kernel-controller
labels:
app: enterprise-gateway
component: kernel

rules:
- apiGroups: [""]
resources: ["pods"]
verbs: ["get", "watch", "list", "create", "delete"]

As noted above, installations wishing to pre-create their own kernel namespaces should provide the name of the
service account associated with the namespace via KERNEL_SERVICE_ACCOUNT_NAME in the env portion of the
kernel creation request (along with KERNEL_NAMESPACE). If not provided, the built-in namespace service account,
default, will be referenced. In such circumstances, Enterprise Gateway will not create a role binding on the name
for the service account, so it is the user’s responsibility to ensure that the service account has the capability to perform
equivalent operations as defined by the kernel-controller role.

Here’s an example of the creation of a custom namespace (kernel-ns) with its own service account (kernel-sa)
and role binding (kernel-controller) that references the cluster-scoped role (kernel-controller) and
includes appropriate labels to help with administration and analysis:

apiVersion: v1
kind: Namespace
metadata:

name: kernel-ns
labels:
app: enterprise-gateway
component: kernel

apiVersion: v1
kind: ServiceAccount
metadata:

name: kernel-sa
namespace: kernel-ns
labels:
app: enterprise-gateway
component: kernel

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:

name: kernel-controller
namespace: kernel-ns
labels:
app: enterprise-gateway
component: kernel

subjects:
- kind: ServiceAccount
name: kernel-sa
namespace: kernel-ns

roleRef:
kind: ClusterRole
name: kernel-controller

(continues on next page)

11.1. Enterprise Gateway Deployment 47

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

apiGroup: rbac.authorization.k8s.io

11.1.3 Kernel Image Puller

Because kernels now reside within containers and its typical for the first reference of a container to trigger its pull
from a docker repository, kernel startup requests can easily timeout whenever the kernel image is first accessed
on any given node. To mitigate this issue, Enterprise Gateway deployment includes a DaemonSet object named
kernel-image-puller or KIP. This object is responsible for polling Enterprise Gateway for the current set of
configured kernelspecs, picking out any configured image name references, and pulling those images to the node on
which KIP is running. Because its a daemon set, this will also address the case when new nodes are added to a
configuration.

The Kernel Image Puller can be configured for the interval at which it checks for new kernelspecs (KIP_INTERVAL),
the number of puller threads it will utilize per node (KIP_NUM_PULLERS), the number of retries it will attempt for a
given image (KIP_NUM_RETRIES), and the pull policy (KIP_PULL_POLICY) - which essentially dictates whether
it will attempt to pull images that its already encoutnered (Always) vs. only pulling the image if it hasn’t seen it yet
(IfNotPresent).

Here’s what the Kernel Image Puller looks like in the yaml. . .

apiVersion: apps/v1
kind: DaemonSet
metadata:

name: kernel-image-puller
namespace: enterprise-gateway

spec:
selector:
matchLabels:

name: kernel-image-puller
template:
metadata:

labels:
name: kernel-image-puller
app: enterprise-gateway
component: kernel-image-puller

spec:
containers:
- name: kernel-image-puller

image: elyra/kernel-image-puller:VERSION
env:
- name: KIP_GATEWAY_HOST

value: "http://enterprise-gateway.enterprise-gateway:8888"
- name: KIP_INTERVAL
value: "300"

- name: KIP_PULL_POLICY
value: "IfNotPresent"

volumeMounts:
- name: dockersock
mountPath: "/var/run/docker.sock"

volumes:
- name: dockersock

hostPath:
path: /var/run/docker.sock

48 Chapter 11. Kubernetes

Enterprise Gateway Documentation, Release 2.0.0

11.1.4 Kernelspec Modifications

One of the more common areas of customization we see occurs within the kernelspec files located in /usr/local/
share/jupyter/kernels. To accommodate the ability to customize the kernel definitions, you have two differ-
ent options: NFS mounts, or custom container images. The two options are mutually exclusive, because they mount
kernelspecs into the same location in the Enterprise Gateway pod.

Via NFS

The kernels directory can be mounted as an NFS volume into the Enterprise Gateway pod, thereby making the ker-
nelspecs available to all EG pods within the Kubernetes cluster (provided the NFS mounts exist on all applicable
nodes).

As an example, we have included the necessary entries for mounting an existing NFS mount point into the Enterprise
Gateway pod. By default, these references are commented out as they require the system administrator configure the
appropriate NFS mounts and server IP. If you are deploying Enterprise Gateway via the Helm chart (see Deploying
Enterprise Gateway, below), you can enable NFS directly via Helm values.

Here you can see how enterprise-gateway.yaml references use of the volume (via volumeMounts for the
container specification and volumes in the pod specification):

spec:
containers:
- env:

- name: EG_NAMESPACE
value: "enterprise-gateway"

- name: EG_KERNEL_CLUSTER_ROLE
value: "kernel-controller"

- name: EG_SHARED_NAMESPACE
value: "False"

- name: EG_TUNNELING_ENABLED
value: "False"

- name: EG_CULL_IDLE_TIMEOUT
value: "600"

- name: EG_LOG_LEVEL
value: "DEBUG"

- name: EG_KERNEL_LAUNCH_TIMEOUT
value: "60"

- name: EG_KERNEL_WHITELIST
value: "['r_kubernetes','python_kubernetes','python_tf_kubernetes','python_

→˓tf_gpu_kubernetes','scala_kubernetes','spark_r_kubernetes','spark_python_kubernetes
→˓','spark_scala_kubernetes']"

image: elyra/enterprise-gateway:VERSION
name: enterprise-gateway
args: ["--gateway"]
ports:
- containerPort: 8888

Uncomment to enable NFS-mounted kernelspecs
volumeMounts:
- name: kernelspecs

mountPath: "/usr/local/share/jupyter/kernels"
volumes:
- name: kernelspecs
nfs:

server: <internal-ip-of-nfs-server>
path: "/usr/local/share/jupyter/kernels"

11.1. Enterprise Gateway Deployment 49

Enterprise Gateway Documentation, Release 2.0.0

Note that because the kernel pod definition file, kernel-pod.yaml, resides in the kernelspecs hierarchy, customizations
to the deployments of future kernel instances can now also take place. In addition, these same entries can be added to
the kernel-pod.yaml definitions if access to the same or other NFS mount points are desired within kernel pods. (We’ll
be looking at ways to make modifications to per-kernel configurations more manageable.)

Use of more formal persistent volume types must include the Persistent Volume and corresponding Persistent Volume
Claim stanzas.

Via Custom Container Image

If you are deploying Enterprise Gateway via the Helm chart (see Deploying Enterprise Gateway, below), then instead
of using NFS, you can build your custom kernelspecs into a container image that Enterprise Gateway consumes. Here’s
an example Dockerfile for such a container:

FROM alpine:3.9

COPY kernels /kernels

This assumes that your source contains a kernels/ directory with all of the kernelspecs you’d like to end up in the
image, e.g. kernels/python_kubernetes/kernel.json and any associated files.

Once you build your custom kernelspecs image and push it to a container registry, you can refer to it from your Helm
deployment. For instance:

helm upgrade --install --atomic --namespace enterprise-gateway enterprise-gateway etc/
→˓kubernetes/helm --set kernelspecs.image=your-custom-image:latest

. . . where your-custom-image:latest is the image name and tag of your kernelspecs image. Once deployed,
the Helm chart copies the data from the /kernels directory of your container into the /usr/local/share/
jupyter/kernels directory of the Enterprise Gateway pod. Note that when this happens, the built-in kernelspecs
are no longer available. So include all kernelspecs that you want to be available in your container image.

Also, you should update the Helm chart kernel_whitelist value with the name(s) of your custom kernelspecs.

11.2 Kubernetes Kernel Instances

There are essentially two kinds of kernels (independent of language) launched within an Enterprise Gateway Kuber-
netes cluster - vanilla and spark-on-kubernetes (if available).

When vanilla kernels are launched, Enterprise Gateway is responsible for creating the corresponding pod. On the
other hand, spark-on-kubernetes kernels are launched via spark-submit with a specific master URI - which
then creates the corresponding pod(s) (including executor pods). Images can be launched using both forms provided
they have the appropriate support for Spark installed.

Here’s the yaml configuration used when vanilla kernels are launched. As noted in the
KubernetesProcessProxy section below, this file (kernel-pod.yaml) serves as a template where each of
the tags surrounded with ${} represent variables that are substituted at the time of the kernel’s launch. All
${kernel_xxx} parameters correspond to KERNEL_XXX environment variables that can be specified from the
client in the kernel creation request’s json body.

apiVersion: v1
kind: Pod
metadata:

name: ${kernel_username}-${kernel_id}
namespace: ${kernel_namespace}

(continues on next page)

50 Chapter 11. Kubernetes

https://github.com/jupyter/enterprise_gateway/blob/master/etc/kernel-launchers/kubernetes/scripts/kernel-pod.yaml
https://kubernetes.io/docs/concepts/storage/persistent-volumes
https://github.com/jupyter/enterprise_gateway/blob/master/etc/kernel-launchers/kubernetes/scripts/kernel-pod.yaml

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

labels:
kernel_id: ${kernel_id}
app: enterprise-gateway
component: kernel

spec:
restartPolicy: Never
serviceAccountName: ${kernel_service_account_name}
securityContext:
runAsUser: ${kernel_uid}
runAsGroup: ${kernel_gid}

containers:
- env:
- name: EG_RESPONSE_ADDRESS

value: ${eg_response_address}
- name: KERNEL_LANGUAGE

value: ${kernel_language}
- name: KERNEL_SPARK_CONTEXT_INIT_MODE

value: ${kernel_spark_context_init_mode}
- name: KERNEL_NAME

value: ${kernel_name}
- name: KERNEL_USERNAME

value: ${kernel_username}
- name: KERNEL_ID

value: ${kernel_id}
- name: KERNEL_NAMESPACE

value: ${kernel_namespace}
image: ${kernel_image}
name: ${kernel_username}-${kernel_id}

There are a number of items worth noting:

1. Kernel pods can be identified in three ways using kubectl:

1. By the global label app=enterprise-gateway - useful when needing to identify all related objects
(e.g., kubectl get all -l app=enterprise-gateway)

2. By the kernel_id label kernel_id=<kernel_id> - useful when only needing specifics about a given
kernel. This label is used internally by enterprise-gateway when performing its discovery and lifecycle
management operations.

3. By the component label component=kernel - useful when needing to identity only ker-
nels and not other enterprise-gateway components. (Note, the latter can be isolated via
component=enterprise-gateway.)

Note that since kernels run in isolated namespaces by default, it’s often helpful to include the clause
--all-namespaces on commands that will span namespaces. To isolate commands to a given namespace,
you’ll need to add the namespace clause --namespace <namespace-name>.

2. Each kernel pod is named by the invoking user (via the KERNEL_USERNAME env) and its kernel_id (env
KERNEL_ID). This identifier also applies to those kernels launched within spark-on-kubernetes.

3. Kernel pods use the specified securityContext. If env KERNEL_UID is not specified in the kernel cre-
ation request a default value of 1000 (the jovyan user) will be used. Similarly for KERNEL_GID, whose
default is 100 (the users group). In addition, Enterprise Gateway enforces a blacklist for each of the UID and
GID values. By default, this list is initialized to the 0 (root) UID and GID. Administrators can configure the
EG_UID_BLACKLIST and EG_GID_BLACKLIST environment variables via the enterprise-gateway.yaml file
with comma-separated values to alter the set of user and group ids to be prevented.

4. As noted above, if KERNEL_NAMESPACE is not provided in the request, Enterprise Gateway will cre-

11.2. Kubernetes Kernel Instances 51

Enterprise Gateway Documentation, Release 2.0.0

ate a namespace using the same naming algorithm for the pod. In addition, the kernel-controller
cluster role will be bound to a namespace-scoped role binding of the same name using the namespace’s
default service account as its subject. Users wishing to use their own kernel namespaces must pro-
vide both KERNEL_NAMESPACE and KERNEL_SERVICE_ACCOUNT_NAME as these are both used in the
kernel-pod.yaml as ${kernel_namespace} and ${kernel_service_account_name}, re-
spectively.

5. Kernel pods have restart policies of Never. This is because the Jupyter framework already has built-in logic
for auto-restarting failed kernels and any other restart policy would likely interfere with the built-in behaviors.

6. The parameters to the launcher that is built into the image are communicated via environment variables as noted
in the env: section above.

11.3 KubernetesProcessProxy

To indicate that a given kernel should be launched into a Kubernetes configuration, the kernel.json file’s metadata
stanza must include a process_proxy stanza indicating a class_name: of KubernetesProcessProxy.
This ensures the appropriate lifecycle management will take place relative to a Kubernetes environment.

Along with the class_name: entry, this process proxy stanza should also include a proxy configuration stanza
which specifies the docker image to associate with the kernel’s pod. If this entry is not provided, the Enterprise Gate-
way implementation will use a default entry of elyra/kernel-py:VERSION. In either case, this value is made
available to the rest of the parameters used to launch the kernel by way of an environment variable: KERNEL_IMAGE.

(Please note that the use of VERSION in docker image tags is a placeholder for the appropriate version-related image
tag. When kernelspecs are built via the Enterprise Gateway Makefile, VERSION is replaced with the appropriate
version denoting the target release. A full list of available image tags can be found in the dockerhub repository
corresponding to each image.)

{
"metadata": {
"process_proxy": {
"class_name": "enterprise_gateway.services.processproxies.k8s.

→˓KubernetesProcessProxy",
"config": {

"image_name": "elyra/kernel-py:VERSION"
}

}
}

}

As always, kernels are launched by virtue of the argv: stanza in their respective kernel.json files. However, when
launching vanilla kernels in a kubernetes environment, what gets invoked isn’t the kernel’s launcher, but, instead, a
python script that is responsible for using the Kubernetes Python API to create the corresponding pod instance. The pod
is configured by applying the values to each of the substitution parameters into the kernel-pod.yaml file previously dis-
played. This file resides in the same scripts directory as the kubernetes launch script - launch_kubernetes.
py - which is referenced by the kernel.json’s argv: stanza:

{
"argv": [
"python",
"/usr/local/share/jupyter/kernels/python_kubernetes/scripts/launch_kubernetes.py",
"--RemoteProcessProxy.kernel-id",

"{kernel_id}",
"--RemoteProcessProxy.response-address",

(continues on next page)

52 Chapter 11. Kubernetes

https://github.com/kubernetes-client/python
https://github.com/jupyter/enterprise_gateway/blob/master/etc/kernel-launchers/kubernetes/scripts/kernel-pod.yaml

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

"{response_address}",
"--RemoteProcessProxy.spark-context-initialization-mode",
"none"

]
}

By default, vanilla kernels use a value of none for the spark context initialization mode so no context will be created
automatically.

When the kernel is intended to target Spark-on-kubernetes, its launch is very much like kernels launched in YARN
cluster mode, albeit with a completely different set of parameters. Here’s an example SPARK_OPTS string value
which best conveys the idea:

"SPARK_OPTS": "--master k8s://https://${KUBERNETES_SERVICE_HOST}:${KUBERNETES_
→˓SERVICE_PORT} --deploy-mode cluster --name ${KERNEL_USERNAME}-${KERNEL_ID} --conf
→˓spark.kubernetes.driver.label.app=enterprise-gateway --conf spark.kubernetes.driver.
→˓label.kernel_id=${KERNEL_ID} --conf spark.kubernetes.executor.label.app=enterprise-
→˓gateway --conf spark.kubernetes.executor.label.kernel_id=${KERNEL_ID} --conf spark.
→˓kubernetes.driver.docker.image=${KERNEL_IMAGE} --conf spark.kubernetes.executor.
→˓docker.image=kubespark/spark-executor-py:v2.2.0-kubernetes-0.5.0 --conf spark.
→˓kubernetes.submission.waitAppCompletion=false",

Note that each of the labels previously discussed are also applied to the driver and executor pods.

For these invocations, the argv: is nearly identical to non-kubernetes configurations, invoking a run.sh script
which essentially holds the spark-submit invocation that takes the aforementioned SPARK_OPTS as its primary
parameter:

{
"argv": [
"/usr/local/share/jupyter/kernels/spark_python_kubernetes/bin/run.sh",
"--RemoteProcessProxy.kernel-id",

"{kernel_id}",
"--RemoteProcessProxy.response-address",
"{response_address}",
"--RemoteProcessProxy.spark-context-initialization-mode",
"lazy"

]
}

11.4 Deploying Enterprise Gateway on Kubernetes

Once the Kubernetes cluster is configured and kubectl is demonstrated to be working on the master node, it is time
to deploy Enterprise Gateway. There a couple of different deployment options - kubectl or helm.

11.4.1 Option 1: Deploying with kubectl

Choose this deployment option if you want to deploy directly from Kubernetes template files with kubectl, rather than
using a package manager like Helm.

Create the Enterprise Gateway kubernetes service and deployment

From the master node, create the service and deployment using the yaml file from a source release or the git repository:

11.4. Deploying Enterprise Gateway on Kubernetes 53

Enterprise Gateway Documentation, Release 2.0.0

kubectl apply -f etc/kubernetes/enterprise-gateway.yaml

service "enterprise-gateway" created
deployment "enterprise-gateway" created

Uninstalling Enterprise Gateway

To shutdown Enterprise Gateway issue a delete command using the previously mentioned global label
app=enterprise-gateway

kubectl delete all -l app=enterprise-gateway

or simply delete the namespace

kubectl delete ns enterprise-gateway

A kernel’s objects can be similarly deleted using the kernel’s namespace. . .

kubectl delete ns <kernel-namespace>

Note that this should not imply that kernels be “shutdown” using a the kernel_id= label. This will likely trigger
Jupyter’s auto-restart logic - so its best to properly shutdown kernels prior to kubernetes object deletions.

Also note that deleting the Enterprise Gateway namespace will not delete cluster-scoped resources like the
cluster roles enterprise-gateway-controller and kernel-controller or the cluster role binding
enterprise-gateway-controller. The following commands can be used to delete these:

kubectl delete clusterrole -l app=enterprise-gateway
kubectl delete clusterrolebinding -l app=enterprise-gateway

11.4.2 Option 2: Deploying with Helm

Choose this option if you want to deploy via a Helm chart. If Ingress is desired see this section before deploying with
helm.

Create the Enterprise Gateway kubernetes service and deployment

From anywhere with Helm cluster access, create the service and deployment by running Helm from a source release
or the git repository:

helm upgrade --install --atomic --namespace enterprise-gateway enterprise-gateway etc/
→˓kubernetes/helm/enterprise-gateway

the helm chart tarball is also accessible as an asset on our release page:

helm install --name enterprise-gateway --atomic --namespace enterprise-gateway https:/
→˓/github.com/jupyter/enterprise_gateway/releases/download/v2.0.0/jupyter_enterprise_
→˓gateway_helm-2.0.0.tgz

54 Chapter 11. Kubernetes

https://helm.sh/
https://github.com/jupyter/enterprise_gateway/releases/tag/v2.0.0

Enterprise Gateway Documentation, Release 2.0.0

Configuration

Here are all of the values that you can set when deploying the Helm chart. You can override them with Helm’s --set
or --values options.

Uninstalling Enterprise Gateway

When using Helm, you can uninstall Enterprise Gateway with the following command:

helm delete --purge enterprise-gateway

11.4.3 Confirm deployment and note the service port mapping

kubectl get all --all-namespaces -l app=enterprise-gateway

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/enterprise-gateway 1 1 1 1 2h

NAME DESIRED CURRENT READY AGE
rs/enterprise-gateway-74c46cb7fc 1 1 1 2h

NAME READY STATUS RESTARTS AGE
po/enterprise-gateway-74c46cb7fc-jrkl7 1/1 Running 0 2h

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
→˓AGE
svc/enterprise-gateway NodePort 10.110.253.220 <none> 8888:32422/TCP 2h

Of particular importance is the mapping to port 8888 (e.g.,32422). If you are performing this on the same host as
where the notebook will run, then you will need to note the cluster-ip entry (e.g.,10.110.253.220).

(Note: if the number of replicas is > 1, then you will see two pods listed with different five-character suffixes.)

Tip: You can avoid the need to point at a different port each time EG is launched by adding an externalIPs: entry
to the spec: section of the enterprise-gateway.yaml file. The file is delivered with this entry commented
out. Of course, you’ll need to change the IP address to that of your kubernetes master node once the comments
characters have been removed.

Uncomment in order to use <k8s-master>:8888
externalIPs:
- 9.30.118.200

However, if using Helm, see the section above about how to set the k8sMasterPublicIP.

The value of the KG_URL used by NB2KG will vary depending on whether you choose to define an ex-
ternal IP or not. If and external IP is defined, you’ll set KG_URL=<externalIP>:8888 else you’ll set
KG_URL=<k8s-master>:32422 but also need to restart clients each time Enterprise Gateway is started.
As a result, use of the externalIPs: value is highly recommended.

11.5 Setting up a Kubernetes Ingress for use with Enterprise Gateway

To setup an ingress with Enterprise Gateway, you’ll need an ingress controller deployed on your kubernetes cluster.
We recommend either NGINX or Traefik. Installation and configuration instructions can be found at the following :

11.5. Setting up a Kubernetes Ingress for use with Enterprise Gateway 55

Enterprise Gateway Documentation, Release 2.0.0

• NGINX-Ingress-Controller

• Traefik

Example - Here the NGINX Ingress Controller is deployed as a LoadBalancer with NodePort 32121 and 30884
open for http and https traffic respectively.

$ kubectl get services --all-namespaces
NAMESPACE NAME TYPE
→˓CLUSTER-IP EXTERNAL-IP PORT(S) AGE
default service/kubernetes ClusterIP
→˓10.96.0.1 <none> 443/TCP 23h
default service/my-nginx-nginx-ingress-controller LoadBalancer
→˓10.105.234.155 <pending> 80:32121/TCP,443:30884/TCP 22h
default service/my-nginx-nginx-ingress-default-backend ClusterIP
→˓10.107.13.85 <none> 80/TCP 22h
enterprise-gateway service/enterprise-gateway NodePort
→˓10.97.127.52 <none> 8888:30767/TCP 27m
kube-system service/kube-dns ClusterIP
→˓10.96.0.10 <none> 53/UDP,53/TCP,9153/TCP 23h
kube-system service/tiller-deploy ClusterIP
→˓10.101.96.215 <none> 44134/TCP 23h

Once you have a Ingress controller installed, you can use the Ingress resource in kubernetes to direct traffic to your
Enterprise Gateway service. The EG helm chart is configured with an ingress template, which can be found at here for
Enterprise Gateway.

Example - Enable ingress and edit etc/kubernetes/helm/values.yaml to the desired configurations and install EG as
normal via Helm.

ingress:
enabled: true # Ingress is disabled by default
annotations: # Annotations to be used, changes depend on which ingress

→˓controller you have deployed # default is nginx
kubernetes.io/ingress.class: "nginx"
nginx.ingress.kubernetes.io/rewrite-target: /$1
nginx.ingress.kubernetes.io/ssl-redirect: "false"
nginx.ingress.kubernetes.io/force-ssl-redirect: "false"

hostName: "" # whether to expose by setting a host-based ingress rule,
→˓default is *
path: /gateway/?(.*) # URL context used to expose EG

A quick look at our ingress resource after deploying EG with Helm :

$ kubectl describe ingress enterprise-gateway-ingress -n enterprise-gateway
Name: enterprise-gateway-ingress
Namespace: enterprise-gateway
Address:
Default backend: default-http-backend:80 (<none>)
Rules:

Host Path Backends
---- ---- --------

*
/gateway/?(.*) enterprise-gateway:8888 (<none>)

Annotations:
kubectl.kubernetes.io/last-applied-configuration: {"apiVersion":"extensions/v1beta1

→˓","kind":"Ingress","metadata":
{"annotations":{"kubernetes.io/ingress.class":"nginx","nginx.ingress.kubernetes.io/

→˓force-ssl-redirect":"false",
(continues on next page)

56 Chapter 11. Kubernetes

https://kubernetes.github.io/ingress-nginx
https://docs.traefik.io/user-guide/kubernetes/
https://github.com/jupyter/enterprise_gateway/tree/master/etc/kubernetes/helm/templates/ingress.yaml

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

"nginx.ingress.kubernetes.io/rewrite-target":"/$1","nginx.ingress.kubernetes.io/ssl-
→˓redirect":"false"},
"name":"enterprise-gateway-ingress","namespace":"enterprise-gateway"},"spec":{"rules

→˓":[{"http":{"paths":[{
"backend":{"serviceName":"enterprise-gateway","servicePort":8888},"path":"/gateway/?

→˓(.*)"}]}}]}}

kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/force-ssl-redirect: false
nginx.ingress.kubernetes.io/rewrite-target: /$1
nginx.ingress.kubernetes.io/ssl-redirect: false

Events: <none>

This will expose the Enterprise Gateway service at

http://KUBERNETES_HOSTNAME:PORT/gateway

where PORT is the ingress controller’s http NodePort we referenced earlier.NOTE: PORT may be optional depend-
ing on how your environment/infrastructure is configured.

11.6 Kubernetes Tips

The following items illustrate some useful commands for navigating Enterprise Gateway within a kubernetes environ-
ment.

• All objects created on behalf of Enterprise Gateway can be located using the label
app=enterprise-gateway. You’ll probably see duplicated entries for the deployments(deploy)
and replication sets (rs) - I didn’t include the duplicates here.

kubectl get all -l app=enterprise-gateway --all-namespaces

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/enterprise-gateway 1 1 1 1 3h

NAME DESIRED CURRENT READY AGE
rs/enterprise-gateway-74c46cb7fc 1 1 1 3h

NAME READY STATUS RESTARTS AGE
po/alice-5e755458-a114-4215-96b7-bcb016fc7b62 1/1 Running 0 8s
po/enterprise-gateway-74c46cb7fc-jrkl7 1/1 Running 0 3h

• All objects related to a given kernel can be located using the label kernel_id=<kernel_id>

kubectl get all -l kernel_id=5e755458-a114-4215-96b7-bcb016fc7b62 --all-namespaces

NAME READY STATUS RESTARTS AGE
po/alice-5e755458-a114-4215-96b7-bcb016fc7b62 1/1 Running 0 28s

Note: because kernels are, by default, isolated to their own namespace, you could also find all objects of a given kernel
using only the --namespace <kernel-namespace> clause.

• To enter into a given pod (i.e., container) in order to get a better idea of what might be happening within the
container, use the exec command with the pod name

11.6. Kubernetes Tips 57

Enterprise Gateway Documentation, Release 2.0.0

kubectl exec -it enterprise-gateway-74c46cb7fc-jrkl7 /bin/bash

• Logs can be accessed against the pods or deployment (requires the object type prefix (e.g., po/))

kubectl logs -f po/alice-5e755458-a114-4215-96b7-bcb016fc7b62

Note that if using multiple replicas, commands against each pod are required.

• The Kubernetes dashboard is useful as well. Its located at port 30000 of the master node

https://elyra-kube1.foo.bar.com:30000/dashboard/#!/overview?namespace=default

From there, logs can be accessed by selecting the Pods option in the left-hand pane followed by the lined icon on the
far right.

• User “system:serviceaccount:default:default” cannot list pods in the namespace “default”

On a recent deployment, Enterprise Gateway was not able to create or list kernel pods. Found the following command
was necessary. (Kubernetes security relative to Enterprise Gateway is still under construction.)

kubectl create clusterrolebinding add-on-cluster-admin --clusterrole=cluster-admin --
→˓serviceaccount=default:default

58 Chapter 11. Kubernetes

CHAPTER

TWELVE

DOCKER SWARM

This page describes the approach taken for integrating Enterprise Gateway into an existing Docker Swarm cluster.

In this solution, Enterprise Gateway is, itself, provisioned as a Docker Swarm service. In this way, Enterprise Gateway
can leverage load balancing and high availability functionality provided by Swarm (although HA cannot be fully
realized until EG supports persistent sessions).

The base Enterprise Gateway image is elyra/enterprise-gateway and can be found in the Enterprise Gateway dockerhub
organization elyra, along with other images. See Runtime Images for image details.

The following sample kernelspecs are currently available on Docker:

• R_docker

• python_docker

• python_tf_docker

• python_tf_gpu_docker

• scala_docker

12.1 Enterprise Gateway Deployment

Enterprise Gateway manifests itself as a Docker Swarm service. It is identified by the name enterprise-gateway
within the cluster. In addition, all objects related to Enterprise Gateway, including kernel instances, have a label of
app=enterprise-gateway applied.

The current deployment uses a compose stack definition, docker-compose.yml which creates an overlay network
intended for use solely by Enterprise Gateway and any kernel-based services it launches.

To deploy the stack to a swarm cluster from a manager node, use:

docker stack deploy -c docker-compose.yml enterprise-gateway

More information about deploying and managing stacks can be found here.

Since Swarm’s support for session-based affinity has not been investigated at this time, the deployment script config-
ures a single replica. Once session affinity is available, the number of replicas can be increased.

An alternative deployment of Enterprise Gateway in docker environments is to deploy Enterprise Gateway as a tradi-
tional docker container. This can be accomplished via the docker-compose.yml file. However, keep in mind that in
choosing this deployment approach, one loses leveraging swarm’s monitoring/restart capabilities. That said, choosing
this approach does not preclude one from leveraging swarm’s scheduling capabilities for launching kernels. As noted
below, kernel instances, and how they manifest as docker-based entities (i.e., a swarm service or a docker container),
is purely a function of the process proxy class to which they’re associated.

59

https://hub.docker.com/r/elyra/enterprise-gateway/
https://hub.docker.com/r/elyra/
docker.html#runtime-images
https://github.com/jupyter/enterprise_gateway/blob/master/etc/docker/docker-compose.yml
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://github.com/jupyter/enterprise_gateway/blob/master/etc/docker/docker-compose.yml

Enterprise Gateway Documentation, Release 2.0.0

To start the stack using compose:

docker-compose up

The documentation for managing a compose stack can be found here.

12.1.1 Kernelspec Modifications

One of the more common areas of customization we see occur within the kernelspec files located in
/usr/local/share/jupyter/kernels. To accommodate the ability to customize the kernel definitions, the kernels direc-
tory can be exposed as a mounted volume thereby making it available to all containers within the swarm cluster.

As an example, we have included the necessary commands to mount these volumes, both in the deployment script and
in the launch_docker.py file used to launch docker-based kernels. By default, these references are commented out as
they require the system administrator to ensure the directories are available throughout the cluster.

Note that because the kernel launch script, launch_docker.py, resides in the kernelspecs hierarchy, updates or modifi-
cations to docker-based kernel instances can now also take place. (We’ll be looking at ways to make modifications to
per-kernel configurations more manageable.)

12.2 Docker Swarm Kernel Instances

Enterprise Gateway currently supports launching of vanilla (i.e., non-spark) kernels within a Docker Swarm cluster.
When kernels are launched, Enterprise Gateway is responsible for creating the appropriate entity. The kind of entity
created is a function of the corresponding process proxy class.

When the process proxy class is DockerSwarmProcessProxy the launch_docker.py script will create a
Docker Swarm service. This service uses a restart policy of none meaning that its configured to go away upon
failures or completion. In addition, because the kernel is launched as a swarm service, the kernel can “land” on any
node of the cluster.

When the process proxy class is DockerProcessProxy the launch_docker.py script will create a traditional
docker container. As a result, the kernel will always reside on the same host as the corresponding Enterprise Gateway.

Items worth noting:

1. The Swarm service or Docker container name will be composed of the launching username
(KERNEL_USERNAME) and kernel-id.

2. The service/container will have 3 labels applied: “kernel_id=”, “component=kernel”, and “app=enterprise-
gateway” - similar to Kubernetes.

3. The service/container will be launched within the same docker network as Enterprise Gateway.

12.3 DockerSwarmProcessProxy

To indicate that a given kernel should be launched as a Docker Swarm service into a swarm cluster, the ker-
nel.json file’s metadata stanza must include a process_proxy stanza indicating a class_name: of
DockerSwarmProcessProxy. This ensures the appropriate lifecycle management will take place relative to a
Docker Swarm environment.

Along with the class_name: entry, this process proxy stanza should also include a proxy configuration stanza
which specifies the docker image to associate with the kernel’s service container. If this entry is not provided, the
Enterprise Gateway implementation will use a default entry of elyra/kernel-py:VERSION. In either case, this

60 Chapter 12. Docker Swarm

https://docs.docker.com/compose/overview/
https://github.com/jupyter/enterprise_gateway/blob/master/etc/kernel-launchers/docker/scripts/launch_docker.py
https://github.com/jupyter/enterprise_gateway/blob/master/etc/kernel-launchers/docker/scripts/launch_docker.py

Enterprise Gateway Documentation, Release 2.0.0

value is made available to the rest of the parameters used to launch the kernel by way of an environment variable:
KERNEL_IMAGE.

(Please note that the use of VERSION in docker image tags is a placeholder for the appropriate version-related image
tag. When kernelspecs are built via the Enterprise Gateway Makefile, VERSION is replaced with the appropriate
version denoting the target release. A full list of available image tags can be found in the dockerhub repository
corresponding to each image.)

{
"metadata": {
"process_proxy": {
"class_name": "enterprise_gateway.services.processproxies.docker_swarm.

→˓DockerSwarmProcessProxy",
"config": {

"image_name": "elyra/kernel-py:VERSION"
}

}
},

}

As always, kernels are launched by virtue of the argv: stanza in their respective kernel.json files. However, when
launching kernels in a docker environment, what gets invoked isn’t the kernel’s launcher, but, instead, a python script
that is responsible for using the Docker Python API to create the corresponding instance.

{
"argv": [
"python",
"/usr/local/share/jupyter/kernels/python_docker/scripts/launch_docker.py",
"--RemoteProcessProxy.kernel-id",

"{kernel_id}",
"--RemoteProcessProxy.response-address",
"{response_address}",
"--RemoteProcessProxy.spark-context-initialization-mode",
"none"

]
}

12.4 DockerProcessProxy

Running containers in Docker Swarm versus traditional Docker are different enough to warrant having separate process
proxy implementations. As a result, the kernel.json file could reference the DockerProcessProxy class and,
accordingly, a traditional docker container (as opposed to a swarm service) will be created. The rest of the kernel.json
file, image name, argv stanza, etc. is identical.

{
"metadata": {
"process_proxy": {
"class_name": "enterprise_gateway.services.processproxies.docker_swarm.

→˓DockerProcessProxy",
"config": {

"image_name": "elyra/kernel-py:VERSION"
}

}
},
"argv": [

(continues on next page)

12.4. DockerProcessProxy 61

https://docker-py.readthedocs.io/en/stable/

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

"python",
"/usr/local/share/jupyter/kernels/python_docker/scripts/launch_docker.py",
"--RemoteProcessProxy.kernel-id",

"{kernel_id}",
"--RemoteProcessProxy.response-address",
"{response_address}",
"--RemoteProcessProxy.spark-context-initialization-mode",
"none"

]
}

Upon invocation, the invoked process proxy will set a “docker mode” environment variable (EG_DOCKER_MODE) to
either swarm or docker, depending on the process proxy instance, that the launch_docker.py script uses to
determine whether a service or container should be created, respectively.

It should be noted that each of these forms of process proxy usage does NOT need to match to the way in
which the Enterprise Gateway instance was deployed. For example, if Enterprise Gateway was deployed using
enterprise-gateway-swarm.sh and a DockerProcessProxy is used, that corresponding kernel will be
launched as a traditional docker container and will reside on the same host as wherever the Enterprise Gateway (swarm)
service is running. Similarly, if Enterprise Gateway was deployed using enterprise-gateway-docker.sh and
a DockerSwarmProcessProxy is used (and assuming a swarm configuration is present), that corresponding ker-
nel will be launched as a docker swarm service and will reside on whatever host the Docker Swarm scheduler decides
is best.

62 Chapter 12. Docker Swarm

CHAPTER

THIRTEEN

IBM SPECTRUM CONDUCTOR

This information will be added shortly. The configuration is similar to that of YARN Cluster mode with the
ConductorClusterProcessProxy used in place of YARNClusterProcessProxy.

The following sample kernelspecs are currently available on Conductor:

• spark_R_conductor_cluster

• spark_python_conductor_cluster

• spark_scala_conductor_cluster

63

kernel-yarn-cluster-mode.html

Enterprise Gateway Documentation, Release 2.0.0

64 Chapter 13. IBM Spectrum Conductor

CHAPTER

FOURTEEN

CONFIGURATION OPTIONS

Jupyter Enterprise Gateway adheres to the Jupyter common configuration approach . You can configure an instance of
Enterprise Gateway using:

1. A configuration file

2. Command line parameters

3. Environment variables

Note that because Enterprise Gateway is built on Kernel Gateway, all of the KernelGatewayApp options can be
specified as EnterpriseGatewayApp options. In addition, the KG_ prefix of inherited environment variables has
also been preserved, while those variables introduced by Enterprise Gateway will be prefixed with EG_.

To generate a template configuration file, run the following:

jupyter enterprisegateway --generate-config

To see the same configuration options at the command line, run the following:

jupyter enterprisegateway --help-all

A snapshot of this help appears below for ease of reference on the web.

Jupyter Enterprise Gateway

Provisions remote Jupyter kernels and proxies HTTP/Websocket traffic to them.

Options

Arguments that take values are actually convenience aliases to full
Configurables, whose aliases are listed on the help line. For more information
on full configurables, see '--help-all'.

--debug
set log level to logging.DEBUG (maximize logging output)

-y
Answer yes to any questions instead of prompting.

--generate-config
generate default config file

--certfile=<Unicode> (KernelGatewayApp.certfile)
Default: None
The full path to an SSL/TLS certificate file. (KG_CERTFILE env var)

--seed_uri=<Unicode> (KernelGatewayApp.seed_uri)
Default: None

(continues on next page)

65

https://jupyter.readthedocs.io/en/latest/projects/config.html

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

Runs the notebook (.ipynb) at the given URI on every kernel launched. No
seed by default. (KG_SEED_URI env var)

--ip=<Unicode> (KernelGatewayApp.ip)
Default: '127.0.0.1'
IP address on which to listen (KG_IP env var)

--log-level=<Enum> (Application.log_level)
Default: 30
Choices: (0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL')
Set the log level by value or name.

--port=<Integer> (KernelGatewayApp.port)
Default: 8888
Port on which to listen (KG_PORT env var)

--api=<Unicode> (KernelGatewayApp.api)
Default: 'kernel_gateway.jupyter_websocket'
Controls which API to expose, that of a Jupyter notebook server, the seed
notebook's, or one provided by another module, respectively using values
'kernel_gateway.jupyter_websocket', 'kernel_gateway.notebook_http', or
another fully qualified module name (KG_API env var)

--port_retries=<Integer> (KernelGatewayApp.port_retries)
Default: 50
Number of ports to try if the specified port is not available
(KG_PORT_RETRIES env var)

--client-ca=<Unicode> (KernelGatewayApp.client_ca)
Default: None
The full path to a certificate authority certificate for SSL/TLS client
authentication. (KG_CLIENT_CA env var)

--config=<Unicode> (JupyterApp.config_file)
Default: u''
Full path of a config file.

--keyfile=<Unicode> (KernelGatewayApp.keyfile)
Default: None
The full path to a private key file for usage with SSL/TLS. (KG_KEYFILE env
var)

Class parameters

Parameters are set from command-line arguments of the form:
`--Class.trait=value`. This line is evaluated in Python, so simple expressions
are allowed, e.g.:: `--C.a='range(3)'` For setting C.a=[0,1,2].

EnterpriseGatewayApp options

--EnterpriseGatewayApp.allow_credentials=<Unicode>

Default: u''
Sets the Access-Control-Allow-Credentials header. (KG_ALLOW_CREDENTIALS env
var)

--EnterpriseGatewayApp.allow_headers=<Unicode>
Default: u''
Sets the Access-Control-Allow-Headers header. (KG_ALLOW_HEADERS env var)

--EnterpriseGatewayApp.allow_methods=<Unicode>
Default: u''
Sets the Access-Control-Allow-Methods header. (KG_ALLOW_METHODS env var)

--EnterpriseGatewayApp.allow_origin=<Unicode>
Default: u''
Sets the Access-Control-Allow-Origin header. (KG_ALLOW_ORIGIN env var)

--EnterpriseGatewayApp.answer_yes=<Bool>
(continues on next page)

66 Chapter 14. Configuration options

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

Default: False
Answer yes to any prompts.

--EnterpriseGatewayApp.api=<Unicode>
Default: 'kernel_gateway.jupyter_websocket'
Controls which API to expose, that of a Jupyter notebook server, the seed
notebook's, or one provided by another module, respectively using values
'kernel_gateway.jupyter_websocket', 'kernel_gateway.notebook_http', or
another fully qualified module name (KG_API env var)

--EnterpriseGatewayApp.auth_token=<Unicode>
Default: u''
Authorization token required for all requests (KG_AUTH_TOKEN env var)

--EnterpriseGatewayApp.authorized_users=<Set>
Default: set([])
Comma-separated list of user names (e.g., ['bob','alice']) against which
KERNEL_USERNAME will be compared. Any match (case-sensitive) will allow the
kernel's launch, otherwise an HTTP 403 (Forbidden) error will be raised.
The set of unauthorized users takes precedence. This option should be used
carefully as it can dramatically limit who can launch kernels.
(EG_AUTHORIZED_USERS env var - non-bracketed, just comma-separated)

--EnterpriseGatewayApp.base_url=<Unicode>
Default: '/'
The base path for mounting all API resources (KG_BASE_URL env var)

--EnterpriseGatewayApp.certfile=<Unicode>
Default: None
The full path to an SSL/TLS certificate file. (KG_CERTFILE env var)

--EnterpriseGatewayApp.client_ca=<Unicode>
Default: None
The full path to a certificate authority certificate for SSL/TLS client
authentication. (KG_CLIENT_CA env var)

--EnterpriseGatewayApp.conductor_endpoint=<Unicode>
Default: None
The http url for accessing the Conductor REST API. (EG_CONDUCTOR_ENDPOINT
env var)

--EnterpriseGatewayApp.config_file=<Unicode>
Default: u''
Full path of a config file.

--EnterpriseGatewayApp.config_file_name=<Unicode>
Default: u''
Specify a config file to load.

--EnterpriseGatewayApp.default_kernel_name=<Unicode>
Default: u''
Default kernel name when spawning a kernel (KG_DEFAULT_KERNEL_NAME env var)

--EnterpriseGatewayApp.env_process_whitelist=<List>
Default: []
Environment variables allowed to be inherited from the spawning process by
the kernel

--EnterpriseGatewayApp.expose_headers=<Unicode>
Default: u''
Sets the Access-Control-Expose-Headers header. (KG_EXPOSE_HEADERS env var)

--EnterpriseGatewayApp.force_kernel_name=<Unicode>
Default: u''
Override any kernel name specified in a notebook or request
(KG_FORCE_KERNEL_NAME env var)

--EnterpriseGatewayApp.generate_config=<Bool>
Default: False
Generate default config file.

--EnterpriseGatewayApp.impersonation_enabled=<Bool>
(continues on next page)

67

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

Default: False
Indicates whether impersonation will be performed during kernel launch.
(EG_IMPERSONATION_ENABLED env var)

--EnterpriseGatewayApp.ip=<Unicode>
Default: '127.0.0.1'
IP address on which to listen (KG_IP env var)

--EnterpriseGatewayApp.kernel_manager_class=<Type>
Default: 'enterprise_gateway.services.kernels.remotemanager.RemoteMapp...
The kernel manager class to use. Should be a subclass of
`notebook.services.kernels.MappingKernelManager`.

--EnterpriseGatewayApp.kernel_spec_manager_class=<Type>
Default: 'enterprise_gateway.services.kernelspecs.remotekernelspec.Rem...
The kernel spec manager class to use. Should be a subclass of
`jupyter_client.kernelspec.KernelSpecManager`.

--EnterpriseGatewayApp.keyfile=<Unicode>
Default: None
The full path to a private key file for usage with SSL/TLS. (KG_KEYFILE env
var)

--EnterpriseGatewayApp.log_datefmt=<Unicode>
Default: '%Y-%m-%d %H:%M:%S'
The date format used by logging formatters for %(asctime)s

--EnterpriseGatewayApp.log_format=<Unicode>
Default: '[%(name)s]%(highlevel)s %(message)s'
The Logging format template

--EnterpriseGatewayApp.log_level=<Enum>
Default: 30
Choices: (0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL')
Set the log level by value or name.

--EnterpriseGatewayApp.max_age=<Unicode>
Default: u''
Sets the Access-Control-Max-Age header. (KG_MAX_AGE env var)

--EnterpriseGatewayApp.max_kernels=<Integer>
Default: None
Limits the number of kernel instances allowed to run by this gateway.
Unbounded by default. (KG_MAX_KERNELS env var)

--EnterpriseGatewayApp.max_kernels_per_user=<Integer>
Default: -1
Specifies the maximum number of kernels a user can have active
simultaneously. A value of -1 disables enforcement.
(EG_MAX_KERNELS_PER_USER env var)

--EnterpriseGatewayApp.port=<Integer>
Default: 8888
Port on which to listen (KG_PORT env var)

--EnterpriseGatewayApp.port_range=<Unicode>
Default: '0..0'
Specifies the lower and upper port numbers from which ports are created.
The bounded values are separated by '..' (e.g., 33245..34245 specifies a
range of 1000 ports to be randomly selected). A range of zero (e.g.,
33245..33245 or 0..0) disables port-range enforcement. (EG_PORT_RANGE env
var)

--EnterpriseGatewayApp.port_retries=<Integer>
Default: 50
Number of ports to try if the specified port is not available
(KG_PORT_RETRIES env var)

--EnterpriseGatewayApp.prespawn_count=<Integer>
Default: None
Number of kernels to prespawn using the default language. No prespawn by

(continues on next page)

68 Chapter 14. Configuration options

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

default. (KG_PRESPAWN_COUNT env var)
--EnterpriseGatewayApp.remote_hosts=<List>

Default: ['localhost']
Bracketed comma-separated list of hosts on which DistributedProcessProxy
kernels will be launched e.g., ['host1','host2']. (EG_REMOTE_HOSTS env var -
non-bracketed, just comma-separated)

--EnterpriseGatewayApp.seed_uri=<Unicode>
Default: None
Runs the notebook (.ipynb) at the given URI on every kernel launched. No
seed by default. (KG_SEED_URI env var)

--EnterpriseGatewayApp.trust_xheaders=<CBool>
Default: False
Use x-* header values for overriding the remote-ip, useful when application
is behing a proxy. (KG_TRUST_XHEADERS env var)

--EnterpriseGatewayApp.unauthorized_users=<Set>
Default: set(['root'])
Comma-separated list of user names (e.g., ['root','admin']) against which
KERNEL_USERNAME will be compared. Any match (case-sensitive) will prevent
the kernel's launch and result in an HTTP 403 (Forbidden) error.
(EG_UNAUTHORIZED_USERS env var - non-bracketed, just comma-separated)

--EnterpriseGatewayApp.yarn_endpoint=<Unicode>
Default: 'http://localhost:8088/ws/v1/cluster'
The http url for accessing the YARN Resource Manager. (EG_YARN_ENDPOINT env
var)

--EnterpriseGatewayApp.yarn_endpoint_security_enabled=<Bool>
Default: False
Is YARN Kerberos/SPNEGO Security enabled (True/False).
(EG_YARN_ENDPOINT_SECURITY_ENABLED env var)

--EnterpriseGatewayApp.ws_ping_interval=<Int>
Default: 30
Specifies the value of ws_ping_interval that is being used for websocket
ping pong mechanism in ZMQ Port Handler from notebook server in seconds.
(EG_WS_PING_INTERVAL_SECS env var)

--KernelSessionManager.enable_persistence=<Bool>
Default: False
Enable kernel session persistence (True or False).
(EG_KERNEL_SESSION_PERSISTENCE env var)

NotebookHTTPPersonality options

--NotebookHTTPPersonality.allow_notebook_download=<Bool>

Default: False
Optional API to download the notebook source code in notebook-http mode,
defaults to not allow

--NotebookHTTPPersonality.cell_parser=<Unicode>
Default: 'kernel_gateway.notebook_http.cell.parser'
Determines which module is used to parse the notebook for endpoints and
documentation. Valid module names include
'kernel_gateway.notebook_http.cell.parser' and
'kernel_gateway.notebook_http.swagger.parser'. (KG_CELL_PARSER env var)

--NotebookHTTPPersonality.comment_prefix=<Dict>
Default: {None: '#', 'scala': '//'}
Maps kernel language to code comment syntax

--NotebookHTTPPersonality.static_path=<Unicode>
Default: None
Serve static files on disk in the given path as /public, defaults to not
serve

(continues on next page)

69

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

JupyterWebsocketPersonality options

--JupyterWebsocketPersonality.env_whitelist=<List>

Default: []
Environment variables allowed to be set when a client requests a new kernel

--JupyterWebsocketPersonality.list_kernels=<Bool>
Default: False
Permits listing of the running kernels using API endpoints /api/kernels and
/api/sessions (KG_LIST_KERNELS env var). Note: Jupyter Notebook allows this
by default but kernel gateway does not.

14.1 Addtional supported environment variables

EG_DEFAULT_KERNEL_SERVICE_ACCOUNT_NAME=default
Kubernetes only. This value indicates the default service account name to use for
kernel namespaces when the Enterprise Gateway needs to create the kernel's

→˓namespace
and KERNEL_SERVICE_ACCOUNT_NAME has not been provided.

EG_DOCKER_NETWORK=enterprise-gateway or bridge
Docker only. Used by the docker deployment and launch scripts, this indicates the
name of the docker network docker network to use. The start scripts default this
value to 'enterprise-gateway' because they create the network. The docker kernel
launcher (launch_docker.py) defaults this value to 'bridge' only in cases where it
wasn't previously set by the deployment script.

EG_ENABLE_TUNNELING=False
Indicates whether tunneling (via ssh) of the kernel and communication ports
is enabled (True) or not (False).

EG_GID_BLACKLIST=0
Containers only. A comma-separated list of group ids (GID) whose values are not
allowed to be referenced by KERNEL_GID. This defaults to the root group id (0).
Attempts to launch a kernel where KERNEL_GID's value is in this list will result
in an exception indicating error 403 (Forbidden). See also EG_UID_BLACKLIST.

EG_KERNEL_CLUSTER_ROLE=kernel-controller or cluster-admin
Kubernetes only. The role to use when binding with the kernel service account.
The enterprise-gateway.yaml script creates the cluster role 'kernel-controller'
and conveys that name via EG_KERNEL_CLUSTER_ROLE. Should the deployment script
not set this valuem, Enterprise Gateway will then use 'cluster-admin'. It is
recommended this value be set to something other than 'cluster-admin'.

EG_KERNEL_LAUNCH_TIMEOUT=30
The time (in seconds) Enterprise Gateway will wait for a kernel's startup
completion status before deeming the startup a failure, at which time a second
startup attempt will take place. If a second timeout occurs, Enterprise
Gateway will report a failure to the client.

EG_KERNEL_LOG_DIR=/tmp
The directory used during remote kernel launches of DistributedProcessProxy
kernels. Files in this directory will be of the form kernel-<kernel_id>.log.

(continues on next page)

70 Chapter 14. Configuration options

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

EG_KERNEL_SESSION_PERSISTENCE=False

Experimental Enables kernel session persistence. Currently, this is purely
experiemental and writes kernel session information to a local file. Should
Enterprise Gateway terminate with running kernels, a subsequent restart of
Enterprise Gateway will attempt to reconnect to the persisted kernels. See
also EG_KERNEL_SESSION_LOCATION and --KernelSessionManager.enable_persistence.

EG_KERNEL_SESSION_LOCATION=<JupyterDataDir>

Experimental The location in which the kernel session information is
→˓persisted.

By default, this is located in the configured JupyterDataDir. See also
EG_KERNEL_SESSION_PERSISTENCE.

EG_LOCAL_IP_BLACKLIST=''
A comma-separated list of local IPv4 addresses (or regular expressions) that
should not be used when determining the response address used to convey connection
information back to Enterprise Gateway from a remote kernel. In some cases, other
network interfaces (e.g., docker with 172.17.0.*) can interfere - leading to
connection failures during kernel startup.
Example: EG_LOCAL_IP_BLACKLIST=172.17.0.*,192.168.0.27 will eliminate the use of
all addresses in 172.17.0 as well as 192.168.0.27

EG_MAX_PORT_RANGE_RETRIES=5
The number of attempts made to locate an available port within the specified
port range. Only applies when --EnterpriseGatewayApp.port_range
(or EG_PORT_RANGE) has been specified or is in use for the given kernel.

EG_MIN_PORT_RANGE_SIZE=1000
The minimum port range size permitted when --EnterpriseGatewayApp.port_range
(or EG_PORT_RANGE) is specified or is in use for the given kernel. Port ranges
reflecting smaller sizes will result in a failure to launch the corresponding
kernel (since port-range can be specified within individual kernel

→˓specifications).

EG_MIRROR_WORKING_DIRS=False
Containers only. If True, kernel creation requests that specify KERNEL_WORKING_

→˓DIR
will set the kernel container's working directory to that value. See also
KERNEL_WORKING_DIR.

EG_NAMESPACE=enterprise-gateway or default
Kubernetes only. Used during Kubernetes deployment, this indicates the name of
the namespace in which the Enterprise Gateway service is deployed. The
enterprise-gateway.yaml file creates this namespace, then sets EG_NAMESPACE dring
deployment. This value is then used within Enterprise Gateway to coordinate kernel
configurations. Should this value not be set during deployment, Enterprise Gateway
will default its value to namespace 'default'.

EG_SHARED_NAMESPACE=False
Kubernetes only. This value indicates whether (True) or not (False) all kernel

→˓pods
should reside in the same namespace as Enterprise Gateway. This is not a

→˓recommended
configuration.

EG_SSH_PORT=22
The port number used for ssh operations for installations choosing to

(continues on next page)

14.1. Addtional supported environment variables 71

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

configure the ssh server on a port other than the default 22.

EG_UID_BLACKLIST=0
Containers only. A comma-separated list of user ids (UID) whose values are not
allowed to be referenced by KERNEL_UID. This defaults to the root user id (0).
Attempts to launch a kernel where KERNEL_UID's value is in this list will result
in an exception indicating error 403 (Forbidden). See also EG_GID_BLACKLIST.

The following environment variables may be useful for troubleshooting:

EG_DOCKER_LOG_LEVEL=WARNING
By default, the docker client library is too verbose for its logging. This
value can be adjusted in situations where docker troubleshooting may be warranted.

EG_KUBERNETES_LOG_LEVEL=WARNING
By default, the kubernetes client library is too verbose for its logging. This
value can be adjusted in situations where kubernetes troubleshooting may be
warranted.

EG_LOG_LEVEL=10
Used by remote launchers and gateway listeners (where the kernel runs), this
indicates the level of logging used by those entities. Level 10 (DEBUG) is
recommended since they don't do verbose logging.

EG_MAX_POLL_ATTEMPTS=10
Polling is used in various places during life-cycle management operations - like
determining if a kernel process is still alive, stopping the process, waiting
for the process to terminate, etc. As a result, it may be useful to adjust
this value during those kinds of troubleshooting scenarios, although that
should rarely be necessary.

EG_POLL_INTERVAL=0.5
The interval (in seconds) to wait before checking poll results again.

EG_REMOVE_CONTAINER=True
Used by launch_docker.py, indicates whether the kernel's docker container should

→˓be
removed following its shutdown. Set this value to 'False' if you want the

→˓container
to be left around in order to troubleshoot issues. Remember to set back to 'True'
to restore normal operation.

EG_SOCKET_TIMEOUT=5.0
The time (in seconds) the enterprise gateway will wait on its connection
file socket waiting on return from a remote kernel launcher. Upon timeout, the
operation will be retried immediately, until the overall time limit has been
exceeded.

EG_SSH_LOG_LEVEL=WARNING
By default, the paramiko ssh library is too verbose for its logging. This
value can be adjusted in situations where ssh troubleshooting may be warranted.

EG_YARN_LOG_LEVEL=WARNING
By default, the yarn-api-client library is too verbose for its logging. This
value can be adjusted in situations where YARN troubleshooting may be warranted.

The following environment variables are managed by Enterprise Gateway and listed here for completeness. Warning:

72 Chapter 14. Configuration options

Enterprise Gateway Documentation, Release 2.0.0

Setting these variables manually could adversely affect operations.

EG_DOCKER_MODE
Docker only. Used by launch_docker.py to determine if the kernel container
should be created using the swarm service API or the regular docker container
API. Enterprise Gateway sets this value depending on whether the kernel is
using the DockerSwarmProcessProxy or DockerProcessProxy.

EG_RESPONSE_ADDRESS
This value is set during each kernel launch and resides in the environment of
the kernel launch process. Its value represents the address to which the remote
kernel's connection information should be sent. Enterprise Gateway is listening
on that socket and will close the socket once the remote kernel launcher has
conveyed the appropriate information.

14.2 Per-kernel Configuration Overrides

As mentioned in the overview of Process Proxy Configuration capabilities, it’s possible to override or amend specific
system-level configuration values on a per-kernel basis. The following enumerates the set of per-kernel configuration
overrides:

• remote_hosts: This process proxy configuration entry can be used to override
--EnterpriseGatewayApp.remote_hosts. Any values specified in the config dictionary over-
ride the globally defined values. These apply to all DistributedProcessProxy kernels.

• yarn_endpoint: This process proxy configuration entry can be used to override
--EnterpriseGatewayApp.yarn_endpoint. Any values specified in the config dictionary override
the globally defined values. These apply to all YarnClusterProcessProxy kernels. Note that you’ll
likely be required to specify a different HADOOP_CONF_DIR setting in the kernel.json’s env stanza in order
of the spark-submit command to target the appropriate YARN cluster.

• authorized_users: This process proxy configuration entry can be used to override
--EnterpriseGatewayApp.authorized_users. Any values specified in the config dictio-
nary override the globally defined values. These values apply to all process-proxy kernels, includ-
ing the default LocalProcessProxy. Note that the typical use-case for this value is to not set
--EnterpriseGatewayApp.authorized_users at the global level, but then restrict access at
the kernel level.

• unauthorized_users: This process proxy configuration entry can be used to amend
--EnterpriseGatewayApp.unauthorized_users. Any values specified in the config dictio-
nary are added to the globally defined values. As a result, once a user is denied access at the global level, they
will always be denied access at the kernel level. These values apply to all process-proxy kernels, including the
default LocalProcessProxy.

• port_range: This process proxy configuration entry can be used to override
--EnterpriseGatewayApp.port_range. Any values specified in the config dictionary override
the globally defined values. These apply to all RemoteProcessProxy kernels.

14.3 Per-kernel Environment Overrides

In some cases, it is useful to allow specific values that exist in a kernel.json env stanza to be overridden on a per-kernel
basis. For example, if the kernelspec supports resource limitations you may want to allow some requests to have access
to more memory or GPUs than another. Enterprise Gateway enables this capability by honoring environment variables
provided in the json request over those same-named variables in the kernel.json env stanza.

14.2. Per-kernel Configuration Overrides 73

system-architecture.html#process-proxy-configuration

Enterprise Gateway Documentation, Release 2.0.0

Environment variables for which this can occur are any variables prefixed with KERNEL_ (with the exception of the in-
ternal KERNEL_GATEWAY variable) as well as any variables listed in the --JupyterWebsocketPersonality.
env_whitelist command-line option (or via the KG_ENV_WHITELIST variable). Locally defined variables
listed in KG_PROCESS_ENV_WHITELIST are also honored.

The following kernel-specific environment variables are used by Enterprise Gateway. As mentioned above, all
KERNEL_ variables submitted in the kernel startup request’s json body will be available to the kernel for its launch.

KERNEL_GID=<from user> or 100
Containers only. This value represents the group id in which the container will

→˓run.
The default value is 100 representing the users group - which is how all kernel

→˓images
produced by Enterprise Gateway are built. See also KERNEL_UID.
Kubernetes: Warning - If KERNEL_GID is set it is strongly recommened that feature-

→˓gate
RunAsGroup be enabled, otherwise, this value will be ignored and the pod will run

→˓as
the root group id. As a result, the setting of this value into the Security

→˓Context
of the kernel pod is commented out in the kernel-pod.yaml file and must be enabled
by the administrator.
Docker: Warning - This value is only added to the supplemental group ids. As a

→˓result,
if used with KERNEL_UID, the resulting container will run as the root group with

→˓this
value listed in its supplemental groups.

KERNEL_EXECUTOR_IMAGE=<from kernel.json process-proxy stanza> or KERNEL_IMAGE
Kubernetees Spark only. This indicates the image that Spark on Kubernetes will use
for the its executors. Although this value could come from the user, its strongly
recommended that the process-proxy stanza of the corresponding kernel's kernelspec
(kernel.json) file be updated to include the image name. If no image name is
provided, the value of KERNEL_IMAGE will be used.

KERNEL_EXTRA_SPARK_OPTS=<from user>
Spark only. This variable allows users to add additional spark options to the
current set of options specified in the corresponding kernel.json file. This
variable is purely optional with no default value. In addition, it is the
responsibility of the the user setting this value to ensure the options passed
are appropriate relative to the target environment. Because this variable

→˓contains
space-separate values, it requires appropriate quotation. For example, to use

→˓with
the elyra/nb2kg docker image, the environment variable would look something like
this:

docker run ... -e KERNEL_EXTRA_SPARK_OPTS=\"--conf spark.driver.memory=2g
--conf spark.executor.memory=2g\" ... elyra/nb2kg

KERNEL_ID=<from user> or <system generated>
This value represents the identifier used by the Jupyter framework to identify
the kernel. Although this value could be provided by the user, it is recommended
that it be generated by the system.

KERNEL_IMAGE=<from user> or <from kernel.json process-proxy stanza>
Containers only. This indicates the image to use for the kernel in containerized
environments - Kubernetes or Docker. Although it can be provided by the user, it

(continues on next page)

74 Chapter 14. Configuration options

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

is strongly recommended that the process-proxy stanza of the corresponding kernel
→˓'s

kernelspec (kernel.json) file be updated to include the image name.

KERNEL_LAUNCH_TIMEOUT=<from user> or EG_KERNEL_LAUNCH_TIMEOUT
Indicates the time (in seconds) to allow for a kernel's launch. This value should
be submitted in the kernel startup if that particular kernel's startup time is
expected to exceed that of the EG_KERNEL_LAUNCH_TIMEOUT set when Enterprise
Gateway starts.

KERNEL_NAMESPACE=<from user> or KERNEL_POD_NAME or EG_NAMESPACE
Kubernetes only. This indicates the name of the namespace to use or create on
Kubernetes in which the kernel pod will be located. For users wishing to use a
pre-created namespace, this value should be submitted in the kernel startup
request. In such cases, the user must also provide KERNEL_SERVICE_ACCOUNT_NAME.
If not provided, Enterprise Gateway will create a new namespace for the kernel
whose value is derived from KERNEL_POD_NAME. In rare cases where
EG_SHARED_NAMESPACE is True, this value will be set to the value of EG_NAMESPACE.

Note that if the namespace is created by Enterprise Gateway, it will be removed
upon the kernel's termination. Otherwise, the Enterprise Gateway will not
remove the namespace.

KERNEL_POD_NAME=<from user> or KERNEL_USERNAME-KERNEL_ID
Kubernetes only. By default, Enterprise Gateway will use a kernel pod name whose
value is derived from KERNEL_USERNAME and KERNEL_ID separated by a hyphen
('-'). This variable is typically NOT provided by the user, but, in such
cases, Enterprise Gateway will honor that value. However, when provided,
it is the user's responsibility that KERNEL_POD_NAME is unique relative to
any pods in the target namespace. In addition, the pod must NOT exist -
unlike the case if KERNEL_NAMESPACE is provided.

KERNEL_SERVICE_ACCOUNT_NAME=<from user> or EG_DEFAULT_KERNEL_SERVICE_ACCOUNT_NAME
Kubernetes only. This value represents the name of the service account that
Enterprise Gateway should equate with the kernel pod. If Enterprise Gateway
creates the kernel's namespace, it will be associated with the cluster role
identified by EG_KERNEL_CLUSTER_ROLE. If not provided, it will be derived
from EG_DEFAULT_KERNEL_SERVICE_ACCOUNT_NAME.

KERNEL_UID=<from user> or 1000
Containers only. This value represents the user id in which the container will

→˓run.
The default value is 1000 representing the jovyan user - which is how all kernel

→˓images
produced by Enterprise Gateway are built. See also KERNEL_GID.
Kubernetes: Warning - If KERNEL_UID is set it is strongly recommened that feature-

→˓gate
RunAsGroup be enabled and KERNEL_GID also be set, otherwise, the pod will run as
the root group id. As a result, the setting of this value into the Security

→˓Context
of the kernel pod is commented out in the kernel-pod.yaml file and must be enabled
by the administrator.

KERNEL_USERNAME=<from user> or <enterprise-gateway-user>
This value represents the logical name of the user submitted the request to
start the kernel. Of all the KERNEL_ variables, KERNEL_USERNAME is the one that
should be submitted in the request. In environments in which impersonation is

(continues on next page)

14.3. Per-kernel Environment Overrides 75

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

used it represents the target of the impersonation.

KERNEL_WORKING_DIR=<from user> or None
Containers only. This value should model the directory in which the active
notebook file is running. NB2KG versions >= 0.4.0 will automatically pass this
value. It is intended to be used in conjunction with appropriate volume
mounts in the kernel container such that the user's notebook filesystem exists
in the container and enables the sharing of resources used within the notebook.
As a result, the primary use case for this is for Jupyter Hub users running in
Kubernetes. When a value is provided and EG_MIRROR_WORKING_DIRS=True, Enterprise
Gateway will set the container's working directory to the value specified in
KERNEL_WORKING_DIR. If EG_MIRROR_WORKING_DIRS is False, KERNEL_WORKING_DIR will
not be available for use during the kernel's launch. See also EG_MIRROR_WORKING_

→˓DIRS.

The following kernel-specific environment variables are managed within Enterprise Gateway, but there’s nothing pre-
venting them from being set by the client. As a result, caution should be used if setting these variables manually.

KERNEL_LANGUAGE=<from language entry of kernel.json>
This indicates the language of the kernel. It comes from the language entry
of the corresponding kernel.json file. This value is used within the start
script of the kernel containers, in conjunction with KERNEL_LAUNCHERS_DIR, in
order to determine which launcher and kernel to start when the container is
started.

KERNEL_LAUNCHERS_DIR=/usr/local/bin
Containers only. This value is used within the start script of the kernel
containers, in conjunction with KERNEL_LANGUAGE, to determine where the
appropriate kernel launcher is located.

KERNEL_SPARK_CONTEXT_INIT_MODE=<from argv stanza of kernel.json> or none
Spark containers only. This variables exists to convey to the kernel container's
launch script the mode of Spark context intiatilization it should apply when
starting the spark-based kernel container.

76 Chapter 14. Configuration options

CHAPTER

FIFTEEN

TROUBLESHOOTING

This page identifies scenarios we’ve encountered when running Enterprise Gateway. We also provide instructions for
setting up a debug environment on our Debugging Jupyter Enterprise Gateway page.

• None of the scenarios on this page match or resolve my issue, what do I do next?

If you are unable to resolve your issue, take a look at our open issues list to see if there is an applicable scenario
already reported. If found, please add a comment to the issue so that we can get a sense of urgency (although all
issues are important to us). If not found, please provide the following information if possible.

1. Describe the issue in as much detail as possible. This should include configuration information about your
environment.

2. Gather and attach the following files to the issue. If possible, archiving the files first and attaching the
archive is preferred.

1. The complete Enterprise Gateway log file. If possible, please enable DEBUG logging that encom-
passes the issue. You can refer to this section of our Getting Started page for redirection and DEBUG
enablement.

2. The log file(s) produced from the corresponding kernel. This is primarily a function of the underlying
resource manager.

– For containerized installations like Kubernetes or Docker Swarm, kernel log output can be cap-
tured by running the appropriate logs command against the pod or container, respectively. The
names of the corresponding pod/container can be found in the Enterprise Gateway log.

– For YARN environments, you’ll need to navigate to the appropriate log directory relative the appli-
cation ID associated with the kernel. The application ID can be located in the Enterprise Gateway
log. If you have access to an administrative console, you can usually navigate to the application
logs much more easily.

3. Although unlikely, the notebook log may also be helpful. If we find that the issue is more client-side
related, we may ask for DEBUG logging here as well.

3. If you have altered or created new kernelspecs files, the files corresponding to the failing kernels would be
helpful. These files could also be added to the attached archive or attached separately.

Please know that we understand that some information cannot be provided due to its senstivity. In such cases,
just let us know and we’ll be happy to approach resolution of your issue from a different angle.

• I just installed Enterprise Gateway but nothing happens, how do I proceed?

Because Enterprise Gateway is one element of a networked application, there are various touch points that should
be validated independently. The following items can be used as a checklist to confirm general operability.

1. Confirm that Enterprise Gateway is servicing general requests. This can be accomplished using the fol-
lowing curl command, which should produce the json corresponding to the configured kernelspecs:

77

debug.html
https://github.com/jupyter/enterprise_gateway/issues
getting-started.html#starting-enterprise-gateway

Enterprise Gateway Documentation, Release 2.0.0

curl http://<gateway_server>:<gateway_port>/api/kernelspecs

2. Independently validate any resource manager you’re running against. Various resource managers usually
provide examples for how to go about validating their configuration.

3. Confirm that the Enterprise Gateway arguments for contacting the configured resource manager are in
place. These should be covered in our Getting Started topics.

4. If using a Notebook as your front-end, ensure that the NB2KG extension is properly configured. Once the
notebook has started, a refresh on the tree view should issue the same kernelspecs request in step 1
and the drop-down menu items for available kernels should reflect an entry for each kernelspec returned.

5. Always consult your Enterprise Gateway log file. If you have not redirected stdout and stderr to a
file you are highly encouraged to do so. In addition, you should enable DEBUG logging at least until your
configuration is stable. Please note, however, that you may be asked to produce an Enterprise Gateway log
with DEBUG enabled when reporting issues. An example of output redirection and DEBUG logging is also
provided on our Getting Started page.

• I’m trying to launch a (Python/Scala/R) kernel in YARN Cluster Mode but it failed with a “Kernel error”
and State: ‘FAILED’.

1. Check the output from Enterprise Gateway for an error message. If an applicationId was generated, make
a note of it. For example, you can locate the applicationId application_1506552273380_0011
from the following snippet of message:

[D 2017-09-28 17:13:22.675 EnterpriseGatewayApp] 13: State: 'ACCEPTED', Host:
→˓'burna2.yourcompany.com', KernelID: '28a5e827-4676-4415-bbfc-ac30a0dcc4c3',
→˓ApplicationID: 'application_1506552273380_0011'
17/09/28 17:13:22 INFO YarnClientImpl: Submitted application application_
→˓1506552273380_0011
17/09/28 17:13:22 INFO Client: Application report for application_
→˓1506552273380_0011 (state: ACCEPTED)
17/09/28 17:13:22 INFO Client:

client token: N/A
diagnostics: AM container is launched, waiting for AM container to

→˓Register with RM
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: default
start time: 1506644002471
final status: UNDEFINED
tracking URL: http://burna1.yourcompany.com:8088/proxy/application_

→˓1506552273380_0011/

2. Lookup the YARN log for that applicationId in the YARN ResourceManager UI:

78 Chapter 15. Troubleshooting

getting-started.html#configuring-resource-managers
getting-started.html#connecting-a-notebook-to-enterprise-gateway
getting-started.html#starting-enterprise-gateway

Enterprise Gateway Documentation, Release 2.0.0

3. Drill down from the applicationId to find logs for the failed attempts and take appropriate actions. For
example, for the error below,

Traceback (most recent call last):
File "launch_ipykernel.py", line 7, in <module>

from ipython_genutils.py3compat import str_to_bytes
ImportError: No module named ipython_genutils.py3compat

Simply running “pip install ipython_genutils” should fix the problem. If Anaconda is installed, make sure
the environment variable for Python, i.e. PYSPARK_PYTHON, is properly configured in the kernelspec
and matches the actual Anaconda installation directory.

• I’m trying to launch a (Python/Scala/R) kernel in YARN Client Mode but it failed with a “Kernel error”
and an AuthenticationException.

[E 2017-09-29 11:13:23.277 EnterpriseGatewayApp] Exception
→˓'AuthenticationException' occurred
when creating a SSHClient connecting to 'xxx.xxx.xxx.xxx' with user 'elyra',
message='Authentication failed.'.

This error indicates that the password-less ssh may not be properly configured. Password-less ssh needs to be
configured on the node that the Enterprise Gateway is running on to all other worker nodes.

You might also see an SSHException indicating a similar issue.

[E 2017-09-29 11:13:23.277 EnterpriseGatewayApp] Exception 'SSHException' occurred
when creating a SSHClient connecting to 'xxx.xxx.xxx.xxx' with user 'elyra',
message='No authentication methods available.'.

In general, you can look for more information in the kernel log for YARN Client kernels. The default location is
/tmp with a filename of kernel-<kernel_id>.log. The location can be configured using the environment
variable EG_KERNEL_LOG_DIR during Enterprise Gateway start up.

See Starting Enterprise Gateway for an example of starting the Enterprise Gateway from a script and Supported
Environment Variables for a list of configurable environment variables.

79

getting-started.html#starting-enterprise-gateway
config-options.html#supported-environment-variables
config-options.html#supported-environment-variables

Enterprise Gateway Documentation, Release 2.0.0

• I’m trying to launch a (Python/Scala/R) kernel in YARN Client Mode with SSH tunneling enabled but it
failed with a “Kernel error” and a SSHException.

[E 2017-10-26 11:48:20.922 EnterpriseGatewayApp] The following exception occurred
→˓waiting
for connection file response for KernelId 'da3d0dde-9de1-44b1-b1b4-e6f3cf52dfb9'
→˓on host
'remote-host-name': The authenticity of the host can't be established.

This error indicates that fingerprint for the ECDSA key of the remote host has not been added to the list of
known hosts from where the SSH tunnel is being established.

For example, if the Enterprise Gateway is running on node1 under service-user jdoe and environment variable
EG_REMOTE_HOSTS is set to node2,node3,node4, then the Kernels can be launched on any of those hosts
and a SSH tunnel will be established between node1 and any of the those hosts.

To address this issue, you need to perform a one-time step that requires you to login to node1 as jdoe and
manually SSH into each of the remote hosts and accept the fingerprint of the ECDSA key of the remote host to
be added to the list of known hosts as shown below:

[jdoe@node1 ~]$ ssh node2
The authenticity of host 'node2 (172.16.207.191)' can't be established.
ECDSA key fingerprint is SHA256:Mqi3txf4YiRC9nXg8a/4gQq5vC4SjWmcN1V5Z0+nhZg.
ECDSA key fingerprint is MD5:bc:4b:b2:39:07:98:c1:0b:b4:c3:24:38:92:7a:2d:ef.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'node2,172.16.207.191' (ECDSA) to the list of known
→˓hosts.
[jdoe@node2 ~] exit

Repeat the aforementioned step as jdoe on node1 for each of the hosts listed in EG_REMOTE_HOSTS and
restart Enterprise Gateway.

• I’m trying to launch a (Python/Scala/R) kernel but it failed with TypeError: Incorrect padding.

Traceback (most recent call last):
File "/opt/conda/lib/python3.7/site-packages/tornado/web.py", line 1512, in _

→˓execute
result = yield result

File "/opt/conda/lib/python3.7/site-packages/tornado/gen.py", line 1055, in run
value = future.result()

....

....

....
File "/opt/conda/lib/python3.7/site-packages/enterprise_gateway/services/

→˓kernels/remotemanager.py", line 125, in _launch_kernel
return self.process_proxy.launch_process(kernel_cmd, **kw)

File "/opt/conda/lib/python3.7/site-packages/enterprise_gateway/services/
→˓processproxies/yarn.py", line 63, in launch_process

self.confirm_remote_startup(kernel_cmd, **kw)
File "/opt/conda/lib/python3.7/site-packages/enterprise_gateway/services/

→˓processproxies/yarn.py", line 174, in confirm_remote_startup
ready_to_connect = self.receive_connection_info()

File "/opt/conda/lib/python3.7/site-packages/enterprise_gateway/services/
→˓processproxies/processproxy.py", line 565, in receive_connection_info

raise e
TypeError: Incorrect padding

To address this issue, first ensure that the launchers used for each kernel are derived from the same release as the
Enterprise Gateway server. Next ensure that pycrypto 2.6.1 or later is installed on all hosts using either

80 Chapter 15. Troubleshooting

Enterprise Gateway Documentation, Release 2.0.0

pip install or conda install as shown below:

[jdoe@node1 ~]$ pip uninstall pycrypto
[jdoe@node1 ~]$ pip install pycrypto

or

[jdoe@node1 ~]$ conda install pycrypto

This should be done on the host running Enterprise Gateway as well as all the remote hosts on which the kernel
is launched.

• I’m trying to launch a (Python/Scala/R) kernel with port range but it failed with RuntimeError:
Invalid port range .

Traceback (most recent call last):
File "/opt/conda/lib/python3.7/site-packages/tornado/web.py", line 1511, in _

→˓execute
result = yield result

File "/opt/conda/lib/python3.7/site-packages/tornado/gen.py", line 1055, in run
value = future.result()

....

....
File "/opt/conda/lib/python3.7/site-packages/enterprise_gateway/services/

→˓processproxies/processproxy.py", line 478, in __init__
super(RemoteProcessProxy, self).__init__(kernel_manager, proxy_config)

File "/opt/conda/lib/python3.7/site-packages/enterprise_gateway/services/
→˓processproxies/processproxy.py", line 87, in __init__

self._validate_port_range(proxy_config)
File "/opt/conda/lib/python3.7/site-packages/enterprise_gateway/services/

→˓processproxies/processproxy.py", line 407, in _validate_port_range
"port numbers is (1024, 65535).".format(self.lower_port))

RuntimeError: Invalid port range '1000..2000' specified. Range for valid port
→˓numbers is (1024, 65535).

To address this issue, make sure that the specified port range does not overlap with TCP’s well-known port range
of (0, 1024].

• I’m trying to launch a (Python/Scala/R) kernel but it times out and the YARN application status remain
ACCEPTED.

Enterprise Gateway log from server will look like the one below, and will complain that there are no resources:
launch timeout due to: YARN resources unavailable

State: 'ACCEPTED', Host: '', KernelID: '3181db50-8bb5-4f91-8556-988895f63efa',
→˓ApplicationID: 'application_1537119233094_0001'
State: 'ACCEPTED', Host: '', KernelID: '3181db50-8bb5-4f91-8556-988895f63efa',
→˓ApplicationID: 'application_1537119233094_0001'
...
...
SIGKILL signal sent to pid: 19690
YarnClusterProcessProxy.kill, application ID: application_1537119233094_0001,
→˓kernel ID: 3181db50-8bb5-4f91-8556-988895f63efa, state: ACCEPTED
KernelID: '3181db50-8bb5-4f91-8556-988895f63efa' launch timeout due to: YARN
→˓resources unavailable after 61.0 seconds for app application_1537119233094_0001,
→˓ launch timeout: 60.0! Check YARN configuration.

The most common cause for this is that YARN Resource Managers are failing to start and the cluster see no
resources available. Make sure YARN Resource Managerss are running ok. We have also noticed that, in

81

Enterprise Gateway Documentation, Release 2.0.0

Kerberized environment, sometimes there are issues with directory access right that cause the YARN Resource
Managers to fail to start and this can be corrected by validating the existence of /hadoop/yarn and that it’s
owned by yarn: hadoop.

• The Kernel keeps dying when processing jobs that require large amount of resources (e.g. large files)

This is usually seen when you are trying to use more resources then what is available for your kernel. To address
this issue, increase the amount of memory available for your YARN application or another Resource Manager
managing the kernel.

• I’m trying to use a notebook with user impersonation on a Kerberos enabled cluster but it fails to authen-
ticate.

When using user impersonation in a YARN cluster with Kerberos authentication, if Kerberos is not setup prop-
erly you will usually see the following warning that will keep a notebook from connecting:

WARN Client: Exception encountered while connecting to the server : javax.
→˓security.sasl.SaslException: GSS initiate failed
[Caused by GSSException: No valid credentials provided (Mechanism level: Failed
→˓to find any Kerberos tgt)]

The most common cause for this WARN is when the user that started Enterprise Gateway is not authenticated
with Kerberos. This can happen when the user has either not run kinit or their previous ticket has expired.

• Running Jupyter Enterprise Gateway on OpenShift Kubernetes Environment fails trying to create
/home/jovyan/.local

As described in the OpenShift Admin Guide there is a need to issue the following command to enable running
with USER in Dockerfile.

oc adm policy add-scc-to-group anyuid system:authenticated

82 Chapter 15. Troubleshooting

https://docs.openshift.com/container-platform/3.6/admin_guide/manage_scc.html#enable-images-to-run-with-user-in-the-dockerfile

CHAPTER

SIXTEEN

DEBUGGING JUPYTER ENTERPRISE GATEWAY

This page discusses how to go about debugging Enterprise Gateway. We also provide troubleshooting information on
our Troubleshooting page.

16.1 Configuring your IDE for debugging Jupyter Enterprise Gateway

While your mileage may vary depending on which IDE you are using, the steps below (which was created using
PyChar as an example) should be useful for configuring a debuging session for EG with minimum adjustments for
different IDEs.

16.1.1 Creating a new Debug Configuration

Go to Run->Edit Configuration and create a new python configuration with the following settings:

Script Path:

83

troubleshooting.html

Enterprise Gateway Documentation, Release 2.0.0

/Users/lresende/opensource/jupyter/elyra/scripts/jupyter-enterprisegateway

Parameters:

--ip=0.0.0.0
--log-level=DEBUG
--EnterpriseGatewayApp.yarn_endpoint=“http://elyra-fyi-node-1.fyre.ibm.com:8088/ws/v1/
→˓cluster”
--EnterpriseGatewayApp.remote_hosts=['localhost']

Environment Variables:

EG_ENABLE_TUNNELING=False

Working Directotry:

/Users/lresende/opensource/jupyter/elyra/scripts

16.1.2 Running in debug mode

Now that you have handled the necessary configuration, use Run-Debug and select the debug configuration you just
created and happy debuging.

84 Chapter 16. Debugging Jupyter Enterprise Gateway

CHAPTER

SEVENTEEN

CONTRIBUTING TO JUPYTER ENTERPRISE GATEWAY

Thank you for your interest in Jupyter Enterprise Gateway! If you would like to contribute to the project please first
take a look at the Project Jupyter Contributor Documentation.

Prior to your contribution, we strongly recommend getting acquainted with Enterprise Gateway by checking out the
Development Workflow and System Architecture pages.

85

https://jupyter.readthedocs.io/en/latest/contributor/content-contributor.html
devinstall.html
system-architecture.html

Enterprise Gateway Documentation, Release 2.0.0

86 Chapter 17. Contributing to Jupyter Enterprise Gateway

CHAPTER

EIGHTEEN

DEVELOPMENT WORKFLOW

Here are instructions for setting up a development environment for the Jupyter Enterprise Gateway server. It also
includes common steps in the developer workflow such as building Enterprise Gateway, running tests, building docs,
packaging kernelspecs, etc.

18.1 Prerequisites

Install miniconda and GNU make on your system.

18.2 Clone the repo

Clone this repository in a local directory.

make a directory under ~ to put source
mkdir -p ~/projects
cd !$

clone this repo
git clone https://github.com/jupyter/enterprise_gateway.git

18.3 Make

Enterprise Gateway’s build environment is centered around make and the corresponding Makefile.Entering make
with no parameters yields the following:

activate Activate the virtualenv (default: enterprise-gateway-
→˓dev)
clean-images Remove docker images (includes kernel-based images)
clean-kernel-images Remove kernel-based images
clean Make a clean source tree
dev Make a server in jupyter_websocket mode
dist Make source, binary and kernelspecs distribution to
→˓dist folder
docker-images Build docker images (includes kernel-based images)
docs Make HTML documentation
env Make a dev environment
install Make a conda env with dist/*.whl and dist/*.tar.gz
→˓installed

(continues on next page)

87

https://github.com/jupyter/enterprise_gateway
https://conda.io/miniconda.html
https://www.gnu.org/software/make/

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

itest-docker Run integration tests (optionally) against docker swarm
itest-yarn Run integration tests (optionally) against docker demo
→˓(YARN) container
kernel-images Build kernel-based docker images
kernelspecs Create archives with sample kernelspecs
nuke Make clean + remove conda env
publish-images Push docker images to docker hub
release Make a wheel + source release on PyPI
test Run unit tests

Some of the more useful commands are listed below.

18.4 Build a conda environment

Build a Python 3 conda environment containing the necessary dependencies for running the enterprise gateway server,
running tests, and building documentation.

make env

By default, the env built will be named enterprise-gateway-dev. To produce a different conda env, you can
specify the name via the ENV= parameter.

make ENV=my-conda-env env

Note: If using a non-default conda env, all make commands should include the ENV= parameter, other-
wise the command will use the default environment.

18.5 Build the wheel file

Build a wheel file that can then be installed via pip install

make bdist

18.6 Build the kernelspec tar file

Enterprise Gateway includes two sets of kernelspecs for each of the three primary kernels: IPython,IR, and Toree
to demonstrate remote kernels and their corresponding launchers. One set uses the DistributedProcessProxy
while the other uses the YarnClusterProcessProxy. The following makefile target produces a tar file
(enterprise_gateway_kernelspecs.tar.gz) in the dist directory.

make kernelspecs

Note: Because the scala launcher requires a jar file, make kernelspecs requires the use of sbt to build the scala
launcher jar. Please consult the sbt site for directions to install/upgrade sbt on your platform. We currently prefer the
use of 1.0.3.

88 Chapter 18. Development Workflow

http://www.scala-sbt.org/

Enterprise Gateway Documentation, Release 2.0.0

18.7 Build distribution files

Builds the files necessary for a given release: the wheel file, the source tar file, and the kernelspecs tar file. This is
essentially a helper target consisting of the bdist sdist and kernelspecs targets.

make dist

18.8 Run the Enterprise Gateway server

Run an instance of the Enterprise Gateway server.

make dev

Then access the running server at the URL printed in the console.

18.9 Build the docs

Run Sphinx to build the HTML documentation.

make docs

18.10 Run the unit tests

Run the unit test suite.

make test

18.11 Run the integration tests

Run the integration tests suite.

These tests will bootstrap a docker image with Apache Spark using YARN resource manager and Jupyter Enterprise
Gateway and perform various tests for each kernel in both YARN client and YARN cluster mode.

make itest

18.12 Build the docker images

The following can be used to build all docker images used within the project. See docker images for specific details.

make docker-images

18.7. Build distribution files 89

docker.html

Enterprise Gateway Documentation, Release 2.0.0

90 Chapter 18. Development Workflow

CHAPTER

NINETEEN

DOCKER IMAGES

The project produces three docker images to make both testing and general usage easier:

1. elyra/demo-base

2. elyra/enterprise-gateway-demo

3. elyra/nb2kg

All images can be pulled from docker hub’s elyra organization and their docker files can be found in the github
repository in the appropriate directory of etc/docker.

Local images can also be built via make docker-images.

19.1 elyra/demo-base

The elyra/demo-base image is considered the base image upon which elyra/enterprise-gateway-demo is built. It consist
of a Hadoop (YARN) installation that includes Spark, Java, miniconda and various kernel installations.

The primary use of this image is to quickly build elyra/enterprise-gateway images for testing and development pur-
poses. To build a local image, run make demo-base.

As of the 0.9.0 release, this image can be used to start a separate YARN cluster that, when combined with another
instance of elyra/enterprise-gateway can better demonstrate remote kernel functionality.

19.2 elyra/enterprise-gateway-demo

Built on elyra/demo-base, elyra/enterprise-gateway-demo also includes the various example kernelspecs contained in
the repository.

By default, this container will start with enterprise gateway running as a service user named jovyan. This user is
enabled for sudo so that it can emulate other users where necessary. Other users included in this image are elyra,
bob and alice (names commonly used in security-based examples).

We plan on producing one image per release to the enterprise-gateway-demo docker repo where the image’s tag reflects
the corresponding release.

To build a local image, run make docker-image-enterprise-gateway-demo. Because this is a develop-
ment build, the tag for this image will not reflect the value of the VERSION variable in the root Makefile but will be
‘dev’.

91

https://hub.docker.com/u/elyra/
https://github.com/jupyter/enterprise_gateway/tree/master/etc/docker
https://hub.docker.com/r/elyra/demo-base/
https://hub.docker.com/r/elyra/enterprise-gateway-demo/
https://hub.docker.com/r/elyra/demo-base/
https://hub.docker.com/r/elyra/enterprise-gateway-demo/
https://hub.docker.com/r/elyra/enterprise-gateway-demo/

Enterprise Gateway Documentation, Release 2.0.0

19.3 elyra/nb2kg

Image elyra/nb2kg is a simple image built on jupyterhub/k8s-singleuser-sample along with the latest re-
lease of NB2KG. The image also sets some of the new variables that pertain to enterprise gateway (e.g.,
KG_REQUEST_TIMEOUT, KG_HTTP_USER, KERNEL_USERNAME, etc.).

To build a local image, run make docker-image-nb2kg. Because this is a development build, the tag for this
image will not reflect the value of the VERSION variable in the root Makefile but will be ‘dev’.

92 Chapter 19. Docker Images

https://hub.docker.com/r/elyra/nb2kg/
https://hub.docker.com/r/https://hub.docker.com/r/jupyterhub/k8s-singleuser-sample/
https://github.com/jupyter/nb2kg

CHAPTER

TWENTY

RUNTIME IMAGES

The following sections describe the docker images used within Kubernetes and Docker Swarm environments - all of
which can be pulled from the Enterprise Gateway organization on dockerhub.

20.1 elyra/enterprise-gateway

The primary image for Kubernetes and Docker Swarm support, elyra/enterprise-gateway contains the Enterprise Gate-
way server software and default kernelspec files. For Kubernetes it is deployed using the enterprise-gateway.yaml file.
For Docker Swarm, deployment can be accomplished using enterprise-gateway-swarm.sh although we should convert
this to a docker compose yaml file at some point.

We recommend that a persistent/mounted volume be used so that the kernelspec files can be accessed outside of the
container since we’ve found those to require post-deployment modifications from time to time.

20.2 elyra/kernel-py

Image elyra/kernel-py contains the IPython kernel. It is currently built on the jupyter/scipy-notebook image with
additional support necessary for remote operation.

20.3 elyra/kernel-spark-py

Image elyra/kernel-spark-py is built on elyra/kernel-py and includes the Spark 2.4 distribution for use in Kubernetes
clusters. Please note that the ability to use the kernel within Spark within a Docker Swarm configuration probably
won’t yield the expected results.

20.4 elyra/kernel-tf-py

Image elyra/kernel-tf-py contains the IPython kernel. It is currently built on the jupyter/tensorflow-notebook image
with additional support necessary for remote operation.

20.5 elyra/kernel-scala

Image elyra/kernel-scala contains the Scala (Apache Toree) kernel and is built on elyra/spark which is, itself, built
using the scripts provided by the Spark 2.4 distribution for use in Kubernetes clusters. As a result, the ability to use

93

https://hub.docker.com/r/elyra/
https://hub.docker.com/r/elyra/enterprise-gateway/
https://github.com/jupyter/enterprise_gateway/blob/master/etc/kubernetes/enterprise-gateway.yaml
https://github.com/jupyter/enterprise_gateway/blob/master/etc/docker/enterprise-gateway-swarm.sh
https://hub.docker.com/r/elyra/kernel-py/
https://hub.docker.com/r/jupyter/scipy-notebook
https://hub.docker.com/r/elyra/kernel-spark-py/
https://hub.docker.com/r/elyra/kernel-py
https://hub.docker.com/r/elyra/kernel-tf-py/
https://hub.docker.com/r/jupyter/tensorflow-notebook
https://hub.docker.com/r/elyra/kernel-scala/
https://hub.docker.com/r/elyra/spark

Enterprise Gateway Documentation, Release 2.0.0

the kernel within Spark within a Docker Swarm configuration probably won’t yield the expected results.

Since Toree is currently tied to Spark, creation of a vanilla mode Scala kernel is not high on our current set of priorities.

20.6 elyra/kernel-r

Image elyra/kernel-r contains the IRKernel and is currently built on the jupyter/r-notebook image.

20.7 elyra/kernel-spark-r

Image elyra/kernel-spark-r also contains the IRKernel but is built on elyra/kernel-r and includes the Spark 2.4 distri-
bution for use in Kubernetes clusters.

94 Chapter 20. Runtime Images

https://hub.docker.com/r/elyra/kernel-r/
https://hub.docker.com/r/jupyter/r-notebook/
https://hub.docker.com/r/elyra/kernel-spark-r/
https://hub.docker.com/r/elyra/kernel-r

CHAPTER

TWENTYONE

CUSTOM KERNEL IMAGES

This section presents information needed for how a custom kernel image could be built for your own uses with En-
terprise Gateway. This is typically necessary if one desires to extend the existing image with additional supporting
libraries or an image that encapsulates a different set of functionality altogether.

21.1 Extending Existing Kernel Images

A common form of customization occurs when the existing kernel image is serving the fundamentals but the user
wishes it be extended with additional libraries so as to prevent the need of their imports within the Notebook inter-
actions. Since the image already meets the basic requirements, this is really just a matter of referencing the existing
image in the FROM statement and installing additional libraries. Because the EG kernel images do not run as the root
user, you may need to switch users to perform the update.

FROM elyra/kernel-py:VERSION

USER root # switch to root user to perform installation (if necessary)

RUN pip install my-libraries

USER $NB_UID # switch back to the jovyan user

21.2 Bringing Your Own Kernel Image

Users that do not wish to extend an existing kernel image must be cognizant of a couple things.

1. Requirements of a kernel-based image to be used by Enterprise Gateway.

2. Is the base image one from Jupyter Docker-stacks?

21.2.1 Requirements for Custom Kernel Images

Custom kernel images require some support files from the Enterprise Gateway repository.
These are packaged into a tar file for each release starting in 2.0.0. This tar file (named
jupyter_enterprise_gateway_kernel_image_files-VERSION.tar.gz) is composed of a few
files - one bootstrap script and a kernel launcher (one per kernel type).

95

docker.html#requirements-for-custom-kernel-images
https://github.com/jupyter/docker-stacks

Enterprise Gateway Documentation, Release 2.0.0

Bootstrap-kernel.sh

Enterprise Gateway provides a single bootstrap-kernel.sh script that handles the three kernel languages supported out
of the box - Python, R, and Scala. When a kernel image is started by Enterprise Gateway, parameters used within
the bootstrap-kernel.sh script are conveyed via environment variables. The bootstrap script is then responsible for
validating and converting those parameters to meaningful arguments to the appropriate launcher.

Kernel Launcher

The kernel launcher, as discussed here does a number of things. In paricular, it creates the connection ports and
conveys that connection information back to Enterprise Gateway via the socket identified by the response address
parameter. Although not a requirement for container-based usage, it is recommended that the launcher be written in
the same language as the kernel. (This is more of a requirement when used in applications like YARN.)

21.2.2 About Jupyter Docker-stacks Images

Most of what is presented assumes the base image for your custom image is derived from the Jupyter Docker-stacks
repository. As a result, it’s good to cover what makes up those assumptions so you can build your own image indepen-
dently from the docker-stacks repository.

All of the images produced from the docker-stacks repository come with a certain user configured. This user is named
jovyan and is mapped to a user id (UID) of 1000 and a group id (GID) of 100 - named users.

The various startup scripts and commands typically reside in /usr/local/bin and we recommend trying to adhere
to that policy.

The base jupyter image, upon which most all images from docker-stacks are built, also contains a
fix-permissions script that is responsible for gracefully adjusting permissions based on its given parameters.
By only changing the necessary permissions, use of this script minimizes the size of the docker layer in which that
command is invoked durnig the build of the docker image.

21.2.3 Sample Dockerfiles for Custom Kernel Images

Below we provide two working Dockerfiles that produce custom kernel images. One based on an existing image from
Jupyter docker-stacks, the other from an independent base image.

Custom Kernel Image Built on Jupyter Image

Here’s an example Dockerfile that installs the minimally necessary items for a python-based kernel image built on the
docker-stack image jupyter/scipy-notebook. Note: the string VERSION must be replaced with the appropri-
ate value.

Choose a base image. Preferrably one from https://github.com/jupyter/docker-stacks
FROM jupyter/scipy-notebook:61d8aaedaeaf

Switch user to root since, if from docker-stacks, its probably jovyan
USER root

Install any packages required for the kernel-wrapper. If the image
does not contain the target kernel (i.e., IPython, IRkernel, etc.,
it should be installed as well.
RUN pip install pycrypto

(continues on next page)

96 Chapter 21. Custom Kernel Images

https://github.com/jupyter/enterprise_gateway/blob/master/etc/kernel-launchers/bootstrap/bootstrap-kernel.sh
system-architecture.html#kernel-launchers
https://github.com/jupyter/docker-stacks

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

Download and extract the enterprise gateway kernel launchers and bootstrap
files and deploy to /usr/local/bin. Change permissions to NB_UID:NB_GID.
RUN wget https://github.com/jupyter/enterprise_gateway/releases/download/vVERSION/
→˓jupyter_enterprise_gateway_kernel_image_files-VERSION.tar.gz &&\

tar -xvf jupyter_enterprise_gateway_kernel_image_files-VERSION.tar.gz -C /usr/
→˓local/bin &&\

rm -f jupyter_enterprise_gateway_kernel_image_files-VERSION.tar.gz &&\
fix-permissions /usr/local/bin

Switch user back to jovyan and setup language and default CMD
USER $NB_UID
ENV KERNEL_LANGUAGE python
CMD /usr/local/bin/bootstrap-kernel.sh

Independent Custom Kernel Image

If your base image is not from docker-stacks, it is recommended that you NOT run the image as USER root and
create an image user that is not UID 0. For this example, we will create the jovyan user with UID 1000 and a
primary group of users, GID 100. Note that Enterprise Gateway makes no assumption relative to the user in which
the kernel image is running.

Aside from configuring the image user, all other aspects of customization are the same. In this case, we’ll use the
tensorflow-gpu image and convert it to be usable via Enterprise Gateway as a custom kernel image. Note that because
this image didn’t have wget we used curl to download the supporting kernel-image files.

FROM tensorflow/tensorflow:1.12.0-gpu-py3

USER root

Install OS dependencies required for the kernel-wrapper. Missing
packages can be installed later only if container is running as
privileged user.
RUN apt-get update && apt-get install -yq --no-install-recommands \

build-essential \
libsm6 \
libxext-dev \
libxrender1 \
netcat \
python3-dev \
tzdata \
unzip \
&& rm -rf /var/lib/apt/lists/*

Install any packages required for the kernel-wrapper. If the image
does not contain the target kernel (i.e., IPython, IRkernel, etc.,
it should be installed as well.
RUN pip install pycrypto

Download and extract the enterprise gateway kernel launchers and bootstrap
files and deploy to /usr/local/bin. Change permissions to NB_UID:NB_GID.
RUN curl -L https://github.com/jupyter/enterprise_gateway/releases/download/vVERSION/
→˓jupyter_enterprise_gateway_kernel_image_files-VERSION.tar.gz | \

tar -xz -C /usr/local/bin

RUN adduser --system --uid 1000 --gid 100 jovyan && \
(continues on next page)

21.2. Bringing Your Own Kernel Image 97

Enterprise Gateway Documentation, Release 2.0.0

(continued from previous page)

chown jovyan:users /usr/local/bin/bootstrap-kernel.sh && \
chmod 0755 /usr/local/bin/bootstrap-kernel.sh && \
chown -R jovyan:users /usr/local/bin/kernel-launchers

ENV NB_UID 1000
ENV NB_GID 100
USER jovyan
ENV KERNEL_LANGUAGE python
CMD /usr/local/bin/bootstrap-kernel.sh

21.3 Deploying Your Custom Kernel Image

The final step in deploying a customer kernel image is creating a corresponding kernelspec directory that is avaiable
to Enterprise Gateway. Since Enterprise Gateway is also running in a container, its import that its kernelspecs folder
either be mounted externally or a new EG image is created with the appropriate kernelspecs directory in place. For the
purposes of this discussion, we’ll assume the kernelspecs directory, /usr/local/share/jupyter/kernels
is externally mounted.

• Find a similar kernelspec directory from which to create your custom kernelspec. The most important aspect
to this is matching the language of your kernel since it will use the same kernel launcher. Another important
question is whether or not your custom kernel uses Spark, because those kernelspecs will vary significantly since
many of the spark options reside in the kernel.json’s env stanza. Since our examples use vanilla (non-Spark)
python kernels we’ll use the python_kubernetes kernelspec as our basis.

cd /usr/local/share/jupyter/kernels
cp -r python_kubernetes python_myCustomKernel

• Edit the kernel.json file and change the display_name:, image_name: and path to
launch_kubernetes.py script.

{
"language": "python",
"display_name": "My Custom Kernel",
"metadata": {
"process_proxy": {
"class_name": "enterprise_gateway.services.processproxies.k8s.

→˓KubernetesProcessProxy",
"config": {

"image_name": "myDockerHub/myCustomKernelImage:myTag"
}

}
},
"env": {
},
"argv": [
"python",
"/usr/local/share/jupyter/kernels/python_myCustomKernel/scripts/launch_kubernetes.

→˓py",
"--RemoteProcessProxy.kernel-id",
"{kernel_id}",
"--RemoteProcessProxy.response-address",
"{response_address}"

]
}

98 Chapter 21. Custom Kernel Images

docker.html#kernel-launcher

Enterprise Gateway Documentation, Release 2.0.0

• If using a whitelist (EG_KERNEL_WHITELIST), be sure to update it with the new kernelspec directory name
(e.g., python_myCustomKernel) and restart/redeploy Enterprise Gateway.

• Launch or refresh your Notebook session and confirm My Custom Kernel appears in the new kernel drop-
down.

• Create a new notebook using My Custom Kernel.

21.3. Deploying Your Custom Kernel Image 99

Enterprise Gateway Documentation, Release 2.0.0

100 Chapter 21. Custom Kernel Images

CHAPTER

TWENTYTWO

PROJECT ROADMAP

We have plenty to do, now and in the future. Here’s where we’re headed:

• Kernel Configuration Profile

– Enable client to request different resource configurations for kernels (e.g. small, medium, large)

– Profiles should be defined by Administrators and enabled for users and/or groups.

• Administration UI

– Dashboard with running kernels

– Lifecycle management

– Time running, stop/kill, Profile Management, etc

• Support for other resource managers

• User Environments

• High Availability

– Session persistence

We’d love to hear any other use cases you might have and look forward to your contributions to Jupyter Enterprise
Gateway.

101

	Getting started
	Enterprise Gateway Features
	Installing Enterprise Gateway
	Installing Kernels
	Starting Enterprise Gateway
	Connecting a Notebook to Enterprise Gateway

	System Architecture
	Enterprise Gateway Process Proxy Extensions
	Remote Mapping Kernel Manager
	Remote Kernel Manager
	Process Proxy
	Kernel Launchers
	Extending Enterprise Gateway

	Security Features
	Authorization
	User Impersonation
	SSH Tunneling
	Securing Enterprise Gateway Server

	Ancillary Features
	Culling idle kernels
	Installing Python modules from within notebook cell

	Use Cases
	Local Mode
	Distributed Mode
	YARN Cluster Mode
	Configuring Kernels for YARN Cluster mode
	Scala Kernel (Apache Toree kernel)
	Installing support for Python (IPython kernel)
	Installing support for R (IRkernel)

	YARN Client Mode
	Scala Kernel (Apache Toree kernel)
	Installing support for Python (IPython kernel)
	Installing support for R (IRkernel)

	Spark Standalone
	Configuring Kernels for Spark Standalone
	Scala Kernel (Apache Toree kernel)
	Installing support for Python (IPython kernel)
	Installing support for R (IRkernel)

	Kubernetes
	Enterprise Gateway Deployment
	Kubernetes Kernel Instances
	KubernetesProcessProxy
	Deploying Enterprise Gateway on Kubernetes
	Setting up a Kubernetes Ingress for use with Enterprise Gateway
	Kubernetes Tips

	Docker Swarm
	Enterprise Gateway Deployment
	Docker Swarm Kernel Instances
	DockerSwarmProcessProxy
	DockerProcessProxy

	IBM Spectrum Conductor
	Configuration options
	Addtional supported environment variables
	Per-kernel Configuration Overrides
	Per-kernel Environment Overrides

	Troubleshooting
	Debugging Jupyter Enterprise Gateway
	Configuring your IDE for debugging Jupyter Enterprise Gateway

	Contributing to Jupyter Enterprise Gateway
	Development Workflow
	Prerequisites
	Clone the repo
	Make
	Build a conda environment
	Build the wheel file
	Build the kernelspec tar file
	Build distribution files
	Run the Enterprise Gateway server
	Build the docs
	Run the unit tests
	Run the integration tests
	Build the docker images

	Docker Images
	elyra/demo-base
	elyra/enterprise-gateway-demo
	elyra/nb2kg

	Runtime Images
	elyra/enterprise-gateway
	elyra/kernel-py
	elyra/kernel-spark-py
	elyra/kernel-tf-py
	elyra/kernel-scala
	elyra/kernel-r
	elyra/kernel-spark-r

	Custom Kernel Images
	Extending Existing Kernel Images
	Bringing Your Own Kernel Image
	Deploying Your Custom Kernel Image

	Project Roadmap

